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ABSTRACT:  
 
A new generation of UAVs is coming that will help improve the situational awareness and assessment necessary to ensure quality data 
collection, especially in difficult conditions like natural disasters. Operators should be relieved from time-consuming data collection 
tasks as much as possible and at the same time, UAVs should assist data collection operations through a more insightful and automated 
guidance thanks to advanced sensing capabilities. In order to achieve this vision, two challenges must be addressed though. The first 
one is to achieve a sufficient autonomy, both in terms of navigation and of interpretation of the data sensed. The second one relates to 
the reliability of the UAV with respect to accidental (safety) or even malicious (security) risks. This however requires the design and 
development of new embedded architectures for drones to be more autonomous, while mitigating the harm they may potentially cause. 
We claim that the increased complexity and flexibility of such platforms requires resorting to modelling, simulation, or formal 
verification techniques in order to validate such critical aspects of the platform. This paper first discusses the potential and challenges 
faced by autonomous UAVs for data acquisition. The design of a flexible and adaptable embedded UAV architecture is then addressed. 
Finally, the need for validating the properties of the platform is discussed. Our approach is sketched and illustrated with the example of 
a lightweight drone performing 3D reconstructions out of the combination of 2D image acquisition and a specific motion control. 
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1. INTRODUCTION 

UAVs or drones can enable data acquisition in situations where 
the access conditions are too dangerous or too difficult for 
humans, notably during natural disasters, or for fastidious and 
repetitive data acquisition tasks. UAVs are currently being used 
in various contexts: entertainment (video), civilian (crop 
monitoring, mapping, etc.) or military (reconnaissance missions, 
etc.). While UAVs are usually remotely controlled, their usage 
will significantly evolve with the introduction of robotic 
platforms and their autonomy-supporting mechanisms. For 
example, during intervention and rescue missions, the efficiency 
of rescuers in 'hostile' situation (flooded areas, areas destroyed 
by an earthquake, etc.) will be improved only if such devices do 
not monopolize their attention. The use of such remote 
acquisition systems should not direly increase the additional 
human resources required to control these drones, thereby again 
pleading for autonomous features. UAVs will also need to take 
decisions about the flight or the operation of the payload in the 
absence of a precise knowledge of the terrain or exact flight 
conditions, and subsequently reassess them. Only a handful of 
existing systems based on automated navigation guided by GPS, 
like the senseFly system (Ackerman, 2013), already exhibit self-
guidance to ensure repetitive tasks in a reliable way. A direct 
consequence of autonomy is that the system should equally 
address safety issues, so as not to endanger human beings or 
goods in its vicinity. 
 
The detection and monitoring of the impact of natural disasters 
[Guha-Sapir, 2013], on which we especially focus, are already 
mainly performed by space borne and air borne systems relying 
on radio and optical instruments. Optical instruments are quite 
useful for a number of missions, but due to their limitations (i.e. 
no observation at night or in the presence of a cloud cover), 
other payloads are being developed. Radio observations on the 

other hand are for instance available 24/7 and are relatively 
insensitive to atmospheric conditions: these are therefore 
particularly useful during the “Response phase” of the disaster 
management cycle when information must be delivered to the 
disaster cell with a as short as possible delay (Wilkinson, 2010), 
(Tanzi, 2011), (Lefeuvre, 2013). This pleads for generic UAV 
platforms yet able to safely adapt to specific missions, and to 
operate diverse payloads in optimal conditions, both 
performance- and constraint-wise. 
 
This paper discusses challenges and approach in the design and 
validation of drone architectures able to flexibly adapt to 
diverse remote data acquisition tasks, endowed with autonomy, 
notably in their navigation, yet retaining enough assurances to 
minimize risks inherent to such systems. 
 

2. AUTONOMY AND ITS CONSEQUENCES 

2.1 Autonomy and system architecture 

Especially due to energetic constraints, the system architectures 
of autonomous UAVs should be as simple as possible, yet 
adapted to its task and safety-enabled, especially when 
operating close to human beings. This requires a better 
cooperation between subsystems. The UAV should notably take 
decisions according to its energy consumption (and its 
remaining energy) to better plan its mission. The data acquired 
by the payload may be exploitable for navigation and for 
mission planning; however, exploiting those data may require 
important computing capabilities possibly unavailable onboard. 
 
The detection capabilities of the embedded payloads are also 
limited by the platform itself: for example, captured aerial 
images may not be useable to achieve a mosaic because the 
acquisition platform has moved sharply under the influence of 



 

wind, or because of the attitude of the drone which has changed 
to avoid an unpredictable obstacle, or even because the terrain 
following induces too many attitude variations. Again, a tighter 
integration between the different subsystems of the UAV may 
help address such issues. For instance, if the navigation system 
has sensors to detect such undesired movements, it would be 
possible to notify the payload when to acquire data optimally 
and how to assemble those data. However, the data related to 
these movements are generally inaccessible to the payload in 
today’s architecture. 
 
In order to achieve a better autonomy, we suggest to grandly 
update the currently used embedded architectures. Figure 1 
presents the functional architecture that we currently develop 
(see also (Tanzi, 2014a)). It consists of four main subsystems: 
(1) the environment sensing (ES) subsystem (including 
obstacles and objectives) including the management of core 
platform sensors, (2) the motion control (MC) subsystem 
(navigation, planning, engine management, etc.), (3) the 
payload management (PM) and operation subsystem (the 
sensors needed for the mission) and (4) the emergency control 
(EC) subsystem, which detects flight issues (energy limitations, 
failures, or imminent crash) and decides to react (immediate 
landing, a parachute drop, an immediate come back to the base, 
etc.). The platform can also be remotely controlled through 
radio in semi-autonomous modes if commands are issued, or to 
transmit data from the payload or telemetry system (especially 
in the case of first-person video / FPV flight). Each subsystem 
can exhibit more or less autonomy. The main addition we 
suggest is the interconnection of those subsystems through a 
shared memory, or more specifically a blackboard system (see 
Section 3.1). 
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Figure 1: Functional view of the subsystems 

 

2.2 Autonomy and dependability 

Autonomy also acutely raises the problem of the dependability 
of the system, which can represent a danger to its environment. 
The architecture must indeed react to both accidental and 
platform-related mistakes (defective components, software 
errors, uncontrolled events), or to environment variations 
(weather, obstacles, quality of communication channel, etc.). 
These events can be accidental or even intentional (attacks). 
 

In particular, the execution of tasks is based on a strict 
adherence to real-time deadlines. Tasks can be classified in 
terms of priority levels depending notably on the associated 
risk. For instance, low-level reactive features, which are 
typically emergency-related for the EC or MC subsystems, 
should have the highest priority. Monitors or observers may 
also be implemented to ensure that the interactions between the 
components of the drone are healthy and to filter undesirable 
interactions. From this standpoint, autonomy may mean energy 
management as well as autonomous decisions, depending on the 
subsystem considered. 
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Figure 2: Main component architecture 

 
Figure 2 shows the architecture that we are currently developing 
from a component-oriented point of view. Components are 
monitored and triggered by the four subsystem controllers, 
depending on their respective role. The payload manager (PM) 
and the environment sensing subsystem (ES) are both in charge 
of different sensors and actuators respectively for the mission 
and for the situational awareness of the platform, and operate in 
parallel under the same circumstances. They sometimes have to 
rely on each other’s sensed data to improve their own operation. 
The motion controller (MC) interacts with several components 
like the avionics sensors or the engines, which it controls 
through autonomous decisions under normal flight conditions. 
Similarly, the motion controller may interact with components 
in the PM subsystem to improve their usage (see Section  4.2 
for an example). The emergency controller (EC) can trigger yet 
other components like the parachute if the UAV goes out of its 
flight envelope. For example, abrupt changes in environmental 
conditions, a partial loss of flying capabilities, or a significant 
decrease in the battery level may require aborting the mission 
and returning to the base, or even activating the emergency 
parachute for an immediate landing.  
 
Table 1 presents three levels of actions available for the EC 
subsystem, each corresponding to a different risk level. 
 

Level Action Causes 
1 Reduce the mission Resources are not sufficient 
2 Abort mission Energy too low 
3 Emergency stop System shutdown 

Table 1: available actions at EC 

 
Data sensing raises two problems however. First, depending on 
the phenomenon monitored, one must define minimum 



 

requirements for obtaining relevant information (minimum 
sampling frequency, data that must be fused from different 
sensors, subsystems involved, etc.). Second, one must ensure 
that data sensing and processing is not going to interfere with 
the real-time operation of the system, especially for safety 
critical functions typically implemented by the MC and ES 
subsystems, for example by creating additional latencies or 
congestions. 
 

3. ARCHITECTURAL SUPPORT 

The following sections describe techniques to implement a core 
collaborative behavior to organize the interactions between 
subsystems and to modify this behavior to support specific 
events during the operation of the UAV. 
 
3.1 Data sharing  

Communications and collaboration between subsystems are 
central issues in the architecture that we propose. They change 
the architecture from a static one dedicated to a specific payload 
or task to a much more modular system in which every sensing 
subsystem formats and stores the data it acquires for other 
subsystems to use as they see fit.  
 
We rely on a shared memory to manage the storage of and 
access to information collected by the sensors. The four basic 
subsystems will thus implement a multi-agent collaboration in a 
centralized manner, realized through systems well known in 
robotics as blackboards (Hayes-Roth. B., 1985) (Corkill. D. D., 
1991) or whiteboards (Boitet, C. and Scligman, M., 1994) 
(Thórisson K. R., et al., 2005). Agents are the different 
functions that may interact. Sensors from the different 
subsystems play the role of knowledge sources, either in raw 
form, for the least verbose, or through some preprocessing that 
extracts a summarized dataset to be exchanged with other 
agents. Such a data structure based approach has proven quite 
useful in order to exchange data flexibly between processes 
without hardcoding specific data exchange patterns at code 
level, and without knowing in advance the interested recipients. 
It is quite important to retain a modular definition of 
subsystems, and even functions. Whiteboards are an extension 
of blackboards, supporting less structured data. Some of these 
even add, among other functionalities, messaging capabilities 
through the introduction of a communication middleware. Such 
mechanisms would be especially interesting for a UAV 
comprising distributed processors, like for instance multiple 
boards communication through buses. 
 
Black/Whiteboards for instance would allow to access flight 
data (MC or ES) and payload sensor data (PM) from other 
subsystems and for instance to fuse them in order to improve 
the geolocation precision. The ever-increasing flight capabilities 
of UAVs coupled with the need to use of non-conventional 
sensors such as Lidars, GPRs, or IR cameras to improve the 
autonomy of UAVs will strongly increase the need for such data 
fusion features. 
 
3.2 Subsystem organization and communications 

In contrast with usual black/whiteboard systems in which 
processes are essentially independent, we claim that it is 
essential to handle priorities in an autonomous drone. Those 
priorities are themselves dictated by the nature of the data 
acquired, and then accessed. The definition of priorities directly 
depends on the specific mission undertaken.  

 
The architecture typically aims at supporting the deployment of 
different data handling and processing strategies depending on 
the capabilities of the platform. For instance, if the processing 
power available onboard is not sufficient, communicating with 
external computing resources may be necessary in order to 
comply with the mission requirements. More generally, the 
architecture should make it possible to adapt to cost, 
environmental, and energetic constraints. 
 
We suggest supporting priorities based on an event handling 
strategy and on three levels of operation. Each subsystem 
executes functions classified at three different levels (see Figure 
3). The lowest-level or reflex mode of operation is intended to 
ensure a reactive response to events such as, for example, the 
correction of trajectory disturbed by an external event (e.g., 
unexpected wind). This first level of reaction relies on sensors 
and actuators directly accessible by the subsystem and is thus 
very fast. It may also benefit from techniques of firmware and 
hardware acceleration. Most events should be dealt with at that 
layer in normal modes of operation. 
 
If that reaction is not sufficient, e.g., the deviation from the 
expected and programmed behaviour continues, the control 
should be passed to the procedural mode. A more complete pre-
programmed analysis is then used that may notably access data 
from sensors in other subsystems. Communication with other 
subsystems may also be required as part of the reaction. For 
example, the emergency controller (EC) may notify the payload 
manager (PM) to terminate data acquisitions to adapt the overall 
system resources and behavior to a more demanding situation. 
This level of response is more complex with respect to 
communications and process synchronization, and may use 
more time to deal with a potential problem. 
 
The last level, called the cognitive mode, is used whenever the 
previous mode couldn’t resolve the problem. It implements a 
deliberative analysis of the event that led to this mode and 
which can be an issue. It may even require communicating with 
a command centre and/or a human operator. The overall process 
is thus expected to be longer. 
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Figure 3: Multi-level subsystem organization and subsystem 

communication 

 
 
Some events must be dealt with in real-time, especially if they 
can lead to safety-critical situations. This is especially apparent 
when their handling triggers the procedural or even the 
cognitive layer. Such situations generate necessary resource 



 

reallocations, and may for instance require the preemption or 
suspension of existing activities. 
 
3.3 Runtime mechanisms 

We are currently implementing such mechanisms on top of a 
multicore architecture through thread synchronization. Threads 
provide a lightweight concurrency primitive with an API for the 
manipulation, preemption, or prioritization of multiple 
activities, which is exactly the functionality required to 
coordinate functions executing in our subsystems. Threads also 
come with synchronization primitives that we use to implement 
the black/whiteboard scheduler in our implementation and that 
solve the consistency problems incurred by parallel data 
accesses. 
 
Furthermore, multicore systems are now available in an 
embedded form factor, like the Raspberry Pi 2, or even 
massively multicore one, like for instance the Parallela boards 
(up to 64 cores). The availability of such boards also shows that 
this technology becomes even very affordable for small drones. 
More specifically, with a multicore architecture, we can 
organize threads so that those with a similar priority may run in 
parallel on separate core. We can also take advantage of the 
parallelism inherent to multicore architectures to use threads on 
separate cores to implement majority voting schemes. In this 
manner, safety-critical data processing may be rendered more 
immune to an occasional glitch and thus achieve a more 
dependable behavior of the platform. Massively multicore 
platforms also seem quite appropriate for supporting costly 
computations incurred by image processing or complex data 
reconstructions and if so, would allow to process payload data 
on-board and during the flight. 
 
Even though our current implementation efforts do not aim at 
implementing a real-time operating system, the platform would 
benefit from such mechanisms. We especially think of a 
microkernel like S4 that would allow virtualizing low priority 
tasks. 
 
3.4 Dynamic resources adaptation : an example 

To illustrate the operating principle of our adaptive mechanism, 
we take the example of a simplistic drone attitude control 
mechanism. That scenario unfolds during a Search And Rescue 
(SAR) mission. This mission consists in taking high-resolution 
photographs to create a mosaic of an area of interest (see table 2 
and fig 4).  
 
To simplify, we retain two types of constraints. The firsts relate 
to the completeness of the coverage of the research area and 
therefore the accuracy of navigation. The seconds are inherent 
to the quality of image acquisition – image overlap, image 
shake, etc. - and will be used when processing the mosaic. 
 
As depicted in the table and in the diagram, the arrival of events 
triggers adaptations and the execution of new processes within 
and among several subsystems due to changes in the mode of 
operation and due to the need to access specific data. 
 
 
 
 
 
 
 

 
# MC "Reflex Layer" ON 
1.1 The mission begins. All parameters are nominal. 
1.2 Uncertainties on the track due to the flying conditions 

are detected. An automatic compensation is carried 
out. The required correction response time and the 
"drift" of navigation does not affect the quality of 
shooting 

1.3 Meteorology becomes worrying. The compensation is 
no longer sufficient. The shooting quality is 
compromised. The control evolves to the "Procedural 
Layer”. 

 
# MC "Procedural Layer" ON 
2.1 The analysis shows that from taking cannot continue. 

The motion control subsystem (MC) establishes 
communication with the Payload Management 
subsystem (PM) to stop shooting. 

2.2 The MC negotiates and increases its resources. The 
unused resources of the PM may be re-affected to the 
MC. 

2.3 The analysis of the values produced by the various 
sensors show that the flying conditions continue to 
deteriorate. 

2.4 The Emergency Control (EC) preempts the system 
and issues a warning that the remaining energy 
resources no longer allow to carry out the mission. 
The Emergency Control launches the Level 1 Alarm, 
that is a reduction of the mission (see table 1). 

2.5 The motion control subsystem (MC) activates the 
"Cognitive Layer". 

 
# MC "Cognitive Layer" ON 
3.1 A communication is established with the Command 

Center. A remote-control link with a human operator 
is established for monitoring. 

3.2 The flying conditions continue to deteriorate. The 
Emergency Control (EC) launches the Level 2 Alarm, 
which means aborting the mission and returning to 
the base (see table 1). 

3.3 The motion control subsystem (MC) proceeds to 
return the drone to its landing location. 

3.4 The flying conditions do not allow to fly anymore. 
The Emergency Control (EC) launches the Level 3 
Alarm, which consists in an emergency landing at the 
current location (see table 1). 

3.5 The Emergency Control (EC) preempts all the other 
processes it does not use in order to obtain enough 
bandwidth and computational power. It also stops the 
engines and activates the emergency parachute for 
Emergency Landing. 

3.6 The Emergency Control (EC) maintains a signal to 
facilitate the localization of the drone landed to the 
ground. The communications are encrypted and 
authenticated to ensure the security of the system 
(taken control, localization of the system on the 
ground, etc.). For instance, the operator can instruct 
the drone to remain silent until asked otherwise, a 
command that must be authenticated. 

 
Table 2: Dynamic adaptation of the Motion control (MC) 

subsystem 
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Figure 4: Operation modes and resource adaptation 

 
 

4. DESIGN AND VALIDATION METHODOLOGY 

The approach we suggest relies on the adaptation of a core 
platform and its sensors and actuators to specific payloads and 
missions. The specific mission constraints typically dictate the 
behavior that the autonomous UAV embedded system must 
follow during data acquisition, as well as the risks it will have 
to face in its environment. The large number of software and 
hardware components that must be integrated in the architecture 
and their numerous configurations makes it necessary to use 
validation approaches. These tools will be used in all design and 
development phases in order to ensure the satisfaction of safety 
properties, which are essential for the performance (processor 
optimization, function placement), safety (realtime execution of 
safety critical tasks) as well as for the data acquisition quality. 
In many situations, security properties must also be assessed, 
which address attacks aimed at the platform, at its 
communication links, or at the data acquired. 
 
4.1 Modelling and validation environment 

We experimented in the past with validation issues on 
dependable communicating embedded automotive architectures 

(Schweppe, 2011) and autonomous drones. This work has relied 
on our modelling system, which is based on a UML 
software/hardware partitioning environment named 
DIPLODOCUS (Apvrille, 2006) / TTool (see 
http://ttool.telecom-paristech.fr). DIPLODOCUS is based on 
the UML language and includes the "Y" scheme (Balarin, 
2003). 
 
The approach consists in a three-step methodology: (i) model 
the functions of the system, (ii) capture the candidate hardware 
architectures, which is defined in terms of processors, buses and 
memories, and finally (iii) allocate functions and their 
communications to the resources of the hardware architecture 
and study the impact of this allocation with respect to the 
properties assessed.  
 
In the first iterations of the design, the main purpose of 
validation is not so much to search for possible deadlock 
situations usually studied on more accurate models than to 
study the load of processors and platform buses, and the impact 
of this load on the flight capabilities of the drone. TTool offers 
a press-button approach to verify the models by simulation or 
formal verification. The results of these verifications can be 
displayed directly on the models (see Figure 6).  
 
4.2 An example: a small drone 

We now illustrate some results obtained out of the modelling 
and validation methodology for a mini-drone aimed at 
autonomously navigating inside buildings developed in the 
drone4u project (see https://drone4u.telecom-paristech.fr). This 
drone was implemented on top of an existing drone platform 
(Ranft, 2013). The drone uses a front 720p monocular camera 
to capture 2D images. The realization of a “corkscrew flight” 
allows to reconstruct the UAV 3D environment from a 
stereoscopic reconstruction out of pairs of 2D images taken 
during this movement. This requires the synchronization 
between the motion control (MC) subsystem and the payload 
management (PM) in charge of image acquisition. The UAV 
deduces from its environment model flight orders that are sent 
to the flight control agent. This system relies on a combined on-
board handling and pre-processing of sensor data and offline 
data interpretation in a separate computer wirelessly connected 
to the drone. 

 

 
 

Figure 5: Functional architecture of the drone

http://ttool.telecom-paristech.fr/


 

Figure 5 depicts the logical functional architecture that is the 
different functions that must later on be mapped onto 
processors, and how they communicate. This diagram makes it 
possible to enumerate all potential interactions that may place 
some load on buses or more generally communication links. For 
instance, one can clearly see that data from the different sensors 
(video, attitude, altitude) are sent separately to the 
ComputingNavigationOrders function that fuses them to 
interpret the scene before sending commands to the 
FlightControl. This diagram depicts both events and data flows 
with separate colors. However, our tool cannot yet handle 
dynamic resource reassignments and priorities as discussed in 
this paper.  
 
Figure 6 displays the function placement with respect to CPUs. 
Multiple functions can be mapped to the same processor.  

This diagram also depicts the platform load computed for a 
drone handling 720p images. This overview is obtained from 
TTool that computes the CPU load resulting from a simulation 
of the different tasks at hand, as well as a simulation of the 
inter-CPU information flows triggered by function interactions. 
One can notice that the external CPU, where the image 
processing functions are placed, is quite loaded, whereas the 
rest of the platform is only lightly loaded. This can be used to 
determine that it would be quite safe to run the emergency tasks 
on the drone CPU for instance. Other simulations about 
emergency situations have also been successfully performed to 
verify that this partitioning of functional tasks can support 
emergency response functions within acceptable realtime 
constraints.  
 

  
Figure 6: Placement of functions and load analysis for the drone platform 

 
 

 
5. CONCLUSIONS AND FUTURE WORK 

Designing drones that may perform complex missions is already 
an important challenge [Marks, 2013], yet UAVs will likely 
become mainstream only if their manipulation does not require 
special skills. The realization of an autonomous UAV in this 
context is even more demanding, especially in terms of 
architectures able to support this autonomy with a very good 
level of safety and efficiency. The choice of the runtime 
platform is extremely important to meet these needs. Our 
platform proposal relies on the use of multicore platforms 
together with modes of execution that capture emergency 
situations. It also relies on the separation between competing 
functions in terms of priorities, and on real-time resource 
adaptations at platform level. 
 
The use of modelling and verification tools is an important 
improvement to handle the system complexity and more 
importantly improves the confidence with regards to the 
performance, safety, and security properties met by the platform 
under real conditions of operation. We proposed an approach 
relying on the definition of the hardware and software 
components and their partitioning. In this paper, we illustrated 
this approach with the example of an autonomous drone system 
that we implemented. We presented early modeling and 
verification results based on real-time constraints and a simple 
function partitioning of the drone system modeled using our 
modeling environment TTool. 
 

We are currently refining our architecture and validation 
approach to develop autonomous drones in the scope of post-
disaster humanitarian relief operations (Tanzi, 2014b).  The use 
of advanced sensors that will be necessary in such situations 
will require a significant effort to define the coordination 
patterns among the different subsystems constituting the UAV 
platform. We will investigate ways to express these in a simple 
manner. 
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