
TOWARDS A NEW ARCHITECTURE FOR AUTONOMOUS DATA COLLECTION

T. J. Tanzi a , Y. Roudier b, L. Apvrille a, *

a Institut Mines-Telecom, Telecom ParisTech, LTCI CNRS, 06410 Biot, France - (tullio.tanzi, ludovic.apvrille)@telecom-paristech.fr

b EURECOM, 06410 Biot, France - yves.roudier@eurecom.fr

KEY WORDS: Unmanned Aerial System, Autonomy, Communications, Architecture, Validation, Real-time

ABSTRACT:

A new generation of UAVs is coming that will help improve the situational awareness and assessment necessary to ensure quality data
collection, especially in difficult conditions like natural disasters. Operators should be relieved from time-consuming data collection
tasks as much as possible and at the same time, UAVs should assist data collection operations through a more insightful and automated
guidance thanks to advanced sensing capabilities. In order to achieve this vision, two challenges must be addressed though. The first
one is to achieve a sufficient autonomy, both in terms of navigation and of interpretation of the data sensed. The second one relates to
the reliability of the UAV with respect to accidental (safety) or even malicious (security) risks. This however requires the design and
development of new embedded architectures for drones to be more autonomous, while mitigating the harm they may potentially cause.
We claim that the increased complexity and flexibility of such platforms requires resorting to modelling, simulation, or formal
verification techniques in order to validate such critical aspects of the platform. This paper first discusses the potential and challenges
faced by autonomous UAVs for data acquisition. The design of a flexible and adaptable embedded UAV architecture is then addressed.
Finally, the need for validating the properties of the platform is discussed. Our approach is sketched and illustrated with the example of
a lightweight drone performing 3D reconstructions out of the combination of 2D image acquisition and a specific motion control.

* Corresponding author

1. INTRODUCTION

UAVs or drones can enable data acquisition in situations where
the access conditions are too dangerous or too difficult for
humans, notably during natural disasters, or for fastidious and
repetitive data acquisition tasks. UAVs are currently being used
in various contexts: entertainment (video), civilian (crop
monitoring, mapping, etc.) or military (reconnaissance missions,
etc.). While UAVs are usually remotely controlled, their usage
will significantly evolve with the introduction of robotic
platforms and their autonomy-supporting mechanisms. For
example, during intervention and rescue missions, the efficiency
of rescuers in 'hostile' situation (flooded areas, areas destroyed
by an earthquake, etc.) will be improved only if such devices do
not monopolize their attention. The use of such remote
acquisition systems should not direly increase the additional
human resources required to control these drones, thereby again
pleading for autonomous features. UAVs will also need to take
decisions about the flight or the operation of the payload in the
absence of a precise knowledge of the terrain or exact flight
conditions, and subsequently reassess them. Only a handful of
existing systems based on automated navigation guided by GPS,
like the senseFly system (Ackerman, 2013), already exhibit self-
guidance to ensure repetitive tasks in a reliable way. A direct
consequence of autonomy is that the system should equally
address safety issues, so as not to endanger human beings or
goods in its vicinity.

The detection and monitoring of the impact of natural disasters
[Guha-Sapir, 2013], on which we especially focus, are already
mainly performed by space borne and air borne systems relying
on radio and optical instruments. Optical instruments are quite
useful for a number of missions, but due to their limitations (i.e.
no observation at night or in the presence of a cloud cover),
other payloads are being developed. Radio observations on the

other hand are for instance available 24/7 and are relatively
insensitive to atmospheric conditions: these are therefore
particularly useful during the “Response phase” of the disaster
management cycle when information must be delivered to the
disaster cell with a as short as possible delay (Wilkinson, 2010),
(Tanzi, 2011), (Lefeuvre, 2013). This pleads for generic UAV
platforms yet able to safely adapt to specific missions, and to
operate diverse payloads in optimal conditions, both
performance- and constraint-wise.

This paper discusses challenges and approach in the design and
validation of drone architectures able to flexibly adapt to
diverse remote data acquisition tasks, endowed with autonomy,
notably in their navigation, yet retaining enough assurances to
minimize risks inherent to such systems.

2. AUTONOMY AND ITS CONSEQUENCES

2.1 Autonomy and system architecture

Especially due to energetic constraints, the system architectures
of autonomous UAVs should be as simple as possible, yet
adapted to its task and safety-enabled, especially when
operating close to human beings. This requires a better
cooperation between subsystems. The UAV should notably take
decisions according to its energy consumption (and its
remaining energy) to better plan its mission. The data acquired
by the payload may be exploitable for navigation and for
mission planning; however, exploiting those data may require
important computing capabilities possibly unavailable onboard.

The detection capabilities of the embedded payloads are also
limited by the platform itself: for example, captured aerial
images may not be useable to achieve a mosaic because the
acquisition platform has moved sharply under the influence of

wind, or because of the attitude of the drone which has changed
to avoid an unpredictable obstacle, or even because the terrain
following induces too many attitude variations. Again, a tighter
integration between the different subsystems of the UAV may
help address such issues. For instance, if the navigation system
has sensors to detect such undesired movements, it would be
possible to notify the payload when to acquire data optimally
and how to assemble those data. However, the data related to
these movements are generally inaccessible to the payload in
today’s architecture.

In order to achieve a better autonomy, we suggest to grandly
update the currently used embedded architectures. Figure 1
presents the functional architecture that we currently develop
(see also (Tanzi, 2014a)). It consists of four main subsystems:
(1) the environment sensing (ES) subsystem (including
obstacles and objectives) including the management of core
platform sensors, (2) the motion control (MC) subsystem
(navigation, planning, engine management, etc.), (3) the
payload management (PM) and operation subsystem (the
sensors needed for the mission) and (4) the emergency control
(EC) subsystem, which detects flight issues (energy limitations,
failures, or imminent crash) and decides to react (immediate
landing, a parachute drop, an immediate come back to the base,
etc.). The platform can also be remotely controlled through
radio in semi-autonomous modes if commands are issued, or to
transmit data from the payload or telemetry system (especially
in the case of first-person video / FPV flight). Each subsystem
can exhibit more or less autonomy. The main addition we
suggest is the interconnection of those subsystems through a
shared memory, or more specifically a blackboard system (see
Section 3.1).

Shared
memory

EC PM

MCES

EC: Emergency Control
MC: Motion Control

Sensor and actuator layer
Sensor and actuator layer

Sensor and actuator layer Sensor and actuator layer

PM: Payload Management
ES: Environment Sensing

Figure 1: Functional view of the subsystems

2.2 Autonomy and dependability

Autonomy also acutely raises the problem of the dependability
of the system, which can represent a danger to its environment.
The architecture must indeed react to both accidental and
platform-related mistakes (defective components, software
errors, uncontrolled events), or to environment variations
(weather, obstacles, quality of communication channel, etc.).
These events can be accidental or even intentional (attacks).

In particular, the execution of tasks is based on a strict
adherence to real-time deadlines. Tasks can be classified in
terms of priority levels depending notably on the associated
risk. For instance, low-level reactive features, which are
typically emergency-related for the EC or MC subsystems,
should have the highest priority. Monitors or observers may
also be implemented to ensure that the interactions between the
components of the drone are healthy and to filter undesirable
interactions. From this standpoint, autonomy may mean energy
management as well as autonomous decisions, depending on the
subsystem considered.

MC

Engines Control
Payload and Perception

Sensors

Mission Planning

Internal Processing Facility

Energy

Communications

Avionics Sensors

EC

Safety and Security

Telemetry

Data storage and
processing

ES

PM

Figure 2: Main component architecture

Figure 2 shows the architecture that we are currently developing
from a component-oriented point of view. Components are
monitored and triggered by the four subsystem controllers,
depending on their respective role. The payload manager (PM)
and the environment sensing subsystem (ES) are both in charge
of different sensors and actuators respectively for the mission
and for the situational awareness of the platform, and operate in
parallel under the same circumstances. They sometimes have to
rely on each other’s sensed data to improve their own operation.
The motion controller (MC) interacts with several components
like the avionics sensors or the engines, which it controls
through autonomous decisions under normal flight conditions.
Similarly, the motion controller may interact with components
in the PM subsystem to improve their usage (see Section 4.2
for an example). The emergency controller (EC) can trigger yet
other components like the parachute if the UAV goes out of its
flight envelope. For example, abrupt changes in environmental
conditions, a partial loss of flying capabilities, or a significant
decrease in the battery level may require aborting the mission
and returning to the base, or even activating the emergency
parachute for an immediate landing.

Table 1 presents three levels of actions available for the EC
subsystem, each corresponding to a different risk level.

Level Action Causes
1 Reduce the mission Resources are not sufficient
2 Abort mission Energy too low
3 Emergency stop System shutdown

Table 1: available actions at EC

Data sensing raises two problems however. First, depending on
the phenomenon monitored, one must define minimum

requirements for obtaining relevant information (minimum
sampling frequency, data that must be fused from different
sensors, subsystems involved, etc.). Second, one must ensure
that data sensing and processing is not going to interfere with
the real-time operation of the system, especially for safety
critical functions typically implemented by the MC and ES
subsystems, for example by creating additional latencies or
congestions.

3. ARCHITECTURAL SUPPORT

The following sections describe techniques to implement a core
collaborative behavior to organize the interactions between
subsystems and to modify this behavior to support specific
events during the operation of the UAV.

3.1 Data sharing

Communications and collaboration between subsystems are
central issues in the architecture that we propose. They change
the architecture from a static one dedicated to a specific payload
or task to a much more modular system in which every sensing
subsystem formats and stores the data it acquires for other
subsystems to use as they see fit.

We rely on a shared memory to manage the storage of and
access to information collected by the sensors. The four basic
subsystems will thus implement a multi-agent collaboration in a
centralized manner, realized through systems well known in
robotics as blackboards (Hayes-Roth. B., 1985) (Corkill. D. D.,
1991) or whiteboards (Boitet, C. and Scligman, M., 1994)
(Thórisson K. R., et al., 2005). Agents are the different
functions that may interact. Sensors from the different
subsystems play the role of knowledge sources, either in raw
form, for the least verbose, or through some preprocessing that
extracts a summarized dataset to be exchanged with other
agents. Such a data structure based approach has proven quite
useful in order to exchange data flexibly between processes
without hardcoding specific data exchange patterns at code
level, and without knowing in advance the interested recipients.
It is quite important to retain a modular definition of
subsystems, and even functions. Whiteboards are an extension
of blackboards, supporting less structured data. Some of these
even add, among other functionalities, messaging capabilities
through the introduction of a communication middleware. Such
mechanisms would be especially interesting for a UAV
comprising distributed processors, like for instance multiple
boards communication through buses.

Black/Whiteboards for instance would allow to access flight
data (MC or ES) and payload sensor data (PM) from other
subsystems and for instance to fuse them in order to improve
the geolocation precision. The ever-increasing flight capabilities
of UAVs coupled with the need to use of non-conventional
sensors such as Lidars, GPRs, or IR cameras to improve the
autonomy of UAVs will strongly increase the need for such data
fusion features.

3.2 Subsystem organization and communications

In contrast with usual black/whiteboard systems in which
processes are essentially independent, we claim that it is
essential to handle priorities in an autonomous drone. Those
priorities are themselves dictated by the nature of the data
acquired, and then accessed. The definition of priorities directly
depends on the specific mission undertaken.

The architecture typically aims at supporting the deployment of
different data handling and processing strategies depending on
the capabilities of the platform. For instance, if the processing
power available onboard is not sufficient, communicating with
external computing resources may be necessary in order to
comply with the mission requirements. More generally, the
architecture should make it possible to adapt to cost,
environmental, and energetic constraints.

We suggest supporting priorities based on an event handling
strategy and on three levels of operation. Each subsystem
executes functions classified at three different levels (see Figure
3). The lowest-level or reflex mode of operation is intended to
ensure a reactive response to events such as, for example, the
correction of trajectory disturbed by an external event (e.g.,
unexpected wind). This first level of reaction relies on sensors
and actuators directly accessible by the subsystem and is thus
very fast. It may also benefit from techniques of firmware and
hardware acceleration. Most events should be dealt with at that
layer in normal modes of operation.

If that reaction is not sufficient, e.g., the deviation from the
expected and programmed behaviour continues, the control
should be passed to the procedural mode. A more complete pre-
programmed analysis is then used that may notably access data
from sensors in other subsystems. Communication with other
subsystems may also be required as part of the reaction. For
example, the emergency controller (EC) may notify the payload
manager (PM) to terminate data acquisitions to adapt the overall
system resources and behavior to a more demanding situation.
This level of response is more complex with respect to
communications and process synchronization, and may use
more time to deal with a potential problem.

The last level, called the cognitive mode, is used whenever the
previous mode couldn’t resolve the problem. It implements a
deliberative analysis of the event that led to this mode and
which can be an issue. It may even require communicating with
a command centre and/or a human operator. The overall process
is thus expected to be longer.

Cognitive

Procedural

Reflex

ProceduralProcedural

Sensor and actuator layer

Communication layer

Shared
Memory

Embedded
Data

Shared
Memory

Embedded
Data

Figure 3: Multi-level subsystem organization and subsystem

communication

Some events must be dealt with in real-time, especially if they
can lead to safety-critical situations. This is especially apparent
when their handling triggers the procedural or even the
cognitive layer. Such situations generate necessary resource

reallocations, and may for instance require the preemption or
suspension of existing activities.

3.3 Runtime mechanisms

We are currently implementing such mechanisms on top of a
multicore architecture through thread synchronization. Threads
provide a lightweight concurrency primitive with an API for the
manipulation, preemption, or prioritization of multiple
activities, which is exactly the functionality required to
coordinate functions executing in our subsystems. Threads also
come with synchronization primitives that we use to implement
the black/whiteboard scheduler in our implementation and that
solve the consistency problems incurred by parallel data
accesses.

Furthermore, multicore systems are now available in an
embedded form factor, like the Raspberry Pi 2, or even
massively multicore one, like for instance the Parallela boards
(up to 64 cores). The availability of such boards also shows that
this technology becomes even very affordable for small drones.
More specifically, with a multicore architecture, we can
organize threads so that those with a similar priority may run in
parallel on separate core. We can also take advantage of the
parallelism inherent to multicore architectures to use threads on
separate cores to implement majority voting schemes. In this
manner, safety-critical data processing may be rendered more
immune to an occasional glitch and thus achieve a more
dependable behavior of the platform. Massively multicore
platforms also seem quite appropriate for supporting costly
computations incurred by image processing or complex data
reconstructions and if so, would allow to process payload data
on-board and during the flight.

Even though our current implementation efforts do not aim at
implementing a real-time operating system, the platform would
benefit from such mechanisms. We especially think of a
microkernel like S4 that would allow virtualizing low priority
tasks.

3.4 Dynamic resources adaptation : an example

To illustrate the operating principle of our adaptive mechanism,
we take the example of a simplistic drone attitude control
mechanism. That scenario unfolds during a Search And Rescue
(SAR) mission. This mission consists in taking high-resolution
photographs to create a mosaic of an area of interest (see table 2
and fig 4).

To simplify, we retain two types of constraints. The firsts relate
to the completeness of the coverage of the research area and
therefore the accuracy of navigation. The seconds are inherent
to the quality of image acquisition – image overlap, image
shake, etc. - and will be used when processing the mosaic.

As depicted in the table and in the diagram, the arrival of events
triggers adaptations and the execution of new processes within
and among several subsystems due to changes in the mode of
operation and due to the need to access specific data.

MC "Reflex Layer" ON
1.1 The mission begins. All parameters are nominal.
1.2 Uncertainties on the track due to the flying conditions

are detected. An automatic compensation is carried
out. The required correction response time and the
"drift" of navigation does not affect the quality of
shooting

1.3 Meteorology becomes worrying. The compensation is
no longer sufficient. The shooting quality is
compromised. The control evolves to the "Procedural
Layer”.

MC "Procedural Layer" ON
2.1 The analysis shows that from taking cannot continue.

The motion control subsystem (MC) establishes
communication with the Payload Management
subsystem (PM) to stop shooting.

2.2 The MC negotiates and increases its resources. The
unused resources of the PM may be re-affected to the
MC.

2.3 The analysis of the values produced by the various
sensors show that the flying conditions continue to
deteriorate.

2.4 The Emergency Control (EC) preempts the system
and issues a warning that the remaining energy
resources no longer allow to carry out the mission.
The Emergency Control launches the Level 1 Alarm,
that is a reduction of the mission (see table 1).

2.5 The motion control subsystem (MC) activates the
"Cognitive Layer".

MC "Cognitive Layer" ON
3.1 A communication is established with the Command

Center. A remote-control link with a human operator
is established for monitoring.

3.2 The flying conditions continue to deteriorate. The
Emergency Control (EC) launches the Level 2 Alarm,
which means aborting the mission and returning to
the base (see table 1).

3.3 The motion control subsystem (MC) proceeds to
return the drone to its landing location.

3.4 The flying conditions do not allow to fly anymore.
The Emergency Control (EC) launches the Level 3
Alarm, which consists in an emergency landing at the
current location (see table 1).

3.5 The Emergency Control (EC) preempts all the other
processes it does not use in order to obtain enough
bandwidth and computational power. It also stops the
engines and activates the emergency parachute for
Emergency Landing.

3.6 The Emergency Control (EC) maintains a signal to
facilitate the localization of the drone landed to the
ground. The communications are encrypted and
authenticated to ensure the security of the system
(taken control, localization of the system on the
ground, etc.). For instance, the operator can instruct
the drone to remain silent until asked otherwise, a
command that must be authenticated.

Table 2: Dynamic adaptation of the Motion control (MC)

subsystem

MC

1 1.1

1.2 1.3

2.1 2.2

2.3

3.1
3.2

3.3

EC

3.53.4 3.6

Abort

Start

End

Landing

COM

RC link

MC Reflex layer

MC Procedural layer

MC Cognitive layer

EC

EC

2.42.5

Reduce

COM

RC link

Control Centre

Figure 4: Operation modes and resource adaptation

4. DESIGN AND VALIDATION METHODOLOGY

The approach we suggest relies on the adaptation of a core
platform and its sensors and actuators to specific payloads and
missions. The specific mission constraints typically dictate the
behavior that the autonomous UAV embedded system must
follow during data acquisition, as well as the risks it will have
to face in its environment. The large number of software and
hardware components that must be integrated in the architecture
and their numerous configurations makes it necessary to use
validation approaches. These tools will be used in all design and
development phases in order to ensure the satisfaction of safety
properties, which are essential for the performance (processor
optimization, function placement), safety (realtime execution of
safety critical tasks) as well as for the data acquisition quality.
In many situations, security properties must also be assessed,
which address attacks aimed at the platform, at its
communication links, or at the data acquired.

4.1 Modelling and validation environment

We experimented in the past with validation issues on
dependable communicating embedded automotive architectures

(Schweppe, 2011) and autonomous drones. This work has relied
on our modelling system, which is based on a UML
software/hardware partitioning environment named
DIPLODOCUS (Apvrille, 2006) / TTool (see
http://ttool.telecom-paristech.fr). DIPLODOCUS is based on
the UML language and includes the "Y" scheme (Balarin,
2003).

The approach consists in a three-step methodology: (i) model
the functions of the system, (ii) capture the candidate hardware
architectures, which is defined in terms of processors, buses and
memories, and finally (iii) allocate functions and their
communications to the resources of the hardware architecture
and study the impact of this allocation with respect to the
properties assessed.

In the first iterations of the design, the main purpose of
validation is not so much to search for possible deadlock
situations usually studied on more accurate models than to
study the load of processors and platform buses, and the impact
of this load on the flight capabilities of the drone. TTool offers
a press-button approach to verify the models by simulation or
formal verification. The results of these verifications can be
displayed directly on the models (see Figure 6).

4.2 An example: a small drone

We now illustrate some results obtained out of the modelling
and validation methodology for a mini-drone aimed at
autonomously navigating inside buildings developed in the
drone4u project (see https://drone4u.telecom-paristech.fr). This
drone was implemented on top of an existing drone platform
(Ranft, 2013). The drone uses a front 720p monocular camera
to capture 2D images. The realization of a “corkscrew flight”
allows to reconstruct the UAV 3D environment from a
stereoscopic reconstruction out of pairs of 2D images taken
during this movement. This requires the synchronization
between the motion control (MC) subsystem and the payload
management (PM) in charge of image acquisition. The UAV
deduces from its environment model flight orders that are sent
to the flight control agent. This system relies on a combined on-
board handling and pre-processing of sensor data and offline
data interpretation in a separate computer wirelessly connected
to the drone.

Figure 5: Functional architecture of the drone

http://ttool.telecom-paristech.fr/

Figure 5 depicts the logical functional architecture that is the
different functions that must later on be mapped onto
processors, and how they communicate. This diagram makes it
possible to enumerate all potential interactions that may place
some load on buses or more generally communication links. For
instance, one can clearly see that data from the different sensors
(video, attitude, altitude) are sent separately to the
ComputingNavigationOrders function that fuses them to
interpret the scene before sending commands to the
FlightControl. This diagram depicts both events and data flows
with separate colors. However, our tool cannot yet handle
dynamic resource reassignments and priorities as discussed in
this paper.

Figure 6 displays the function placement with respect to CPUs.
Multiple functions can be mapped to the same processor.

This diagram also depicts the platform load computed for a
drone handling 720p images. This overview is obtained from
TTool that computes the CPU load resulting from a simulation
of the different tasks at hand, as well as a simulation of the
inter-CPU information flows triggered by function interactions.
One can notice that the external CPU, where the image
processing functions are placed, is quite loaded, whereas the
rest of the platform is only lightly loaded. This can be used to
determine that it would be quite safe to run the emergency tasks
on the drone CPU for instance. Other simulations about
emergency situations have also been successfully performed to
verify that this partitioning of functional tasks can support
emergency response functions within acceptable realtime
constraints.

Figure 6: Placement of functions and load analysis for the drone platform

5. CONCLUSIONS AND FUTURE WORK

Designing drones that may perform complex missions is already
an important challenge [Marks, 2013], yet UAVs will likely
become mainstream only if their manipulation does not require
special skills. The realization of an autonomous UAV in this
context is even more demanding, especially in terms of
architectures able to support this autonomy with a very good
level of safety and efficiency. The choice of the runtime
platform is extremely important to meet these needs. Our
platform proposal relies on the use of multicore platforms
together with modes of execution that capture emergency
situations. It also relies on the separation between competing
functions in terms of priorities, and on real-time resource
adaptations at platform level.

The use of modelling and verification tools is an important
improvement to handle the system complexity and more
importantly improves the confidence with regards to the
performance, safety, and security properties met by the platform
under real conditions of operation. We proposed an approach
relying on the definition of the hardware and software
components and their partitioning. In this paper, we illustrated
this approach with the example of an autonomous drone system
that we implemented. We presented early modeling and
verification results based on real-time constraints and a simple
function partitioning of the drone system modeled using our
modeling environment TTool.

We are currently refining our architecture and validation
approach to develop autonomous drones in the scope of post-
disaster humanitarian relief operations (Tanzi, 2014b). The use
of advanced sensors that will be necessary in such situations
will require a significant effort to define the coordination
patterns among the different subsystems constituting the UAV
platform. We will investigate ways to express these in a simple
manner.

REFERENCES

Ackerman, E., 2013. Drone Adventures Uses UAVs to Help
Make the World a Better Place. IEEE Spectrum: Technology,
Engineering, and Science News, May 2013.

Apvrille, L., et al, 2006. A UML-based Environment for System
Design Space Exploration. 13th IEEE International Conference
on Electronics, Circuits and Systems (ICECS'2006), Nice,
France, December 2006

Balarin, et al, 2003. Metropolis: An Integrated Electronic
System Design Environment. Computer, 36(4):45–52.2003.

Boitet, C. and Scligman, M., 1994. The "Whiteboard"
Architecture: A Way to Integrate Heterogeneous Components of
Nlp Systems. In Proceedings of the 15th conference on
Computational linguistics, Volume 1. Pages 426-430. 1994.

Corkill, D. D., 1991. Blackboard systems. AI Expert, 6(9).
Pages 40–47. 1991.

Guha-Sapir, D., Hoyois, P. and Below, R., 2013 “Annual
Disaster Statistical Review 2012: The Number and Trends,” in
CRED, Brussels, Belgium, 2013.

Hayes-Roth, B., 1985. A Blackboard Architecture for Control.
Artificial Intelligence 26. Pages 251-321. 1985

Lefeuvre, F. and Tanzi, T.J, 2013. “International Union of
Radio Science, International Council for Science (ICSU), Joint
Board of Geospatial Information Societies (jBGIS),” in United
Nations office for outer Space Affairs (OOSA), 2013.

Marks, P, 2013. “Smart Software Uses Drones to Plot
Disaster Relief,” NewScientist, Nov. 2013.

Ranft, B., et al, 2013. "3D Perception for Autonomous
Navigation of a Low-Cost MAV using Minimal Landmarks",
Proceedings of the International Micro Air Vehicle Conference
and Flight Competition (IMAV'2013), Toulouse, France, 17-20
Sept. 2013.

Schweppe, H., et al, 2011. C2X Communication: Securing the
Last Meter. Proceedings of the 4th IEEE International
Symposium on Wireless Vehicular Communications:
WIVEC2011, San Francisco, United States, 5-6 September
2011.

Tanzi, T.J. and Lefeuvre, F, 2011. “The Contribution of Radio
Sciences to Disaster Management,” in International Symposium
on Geo-information for disaster management (Gi4DM 2011),
Antalya, Turkey, 2011.

Tanzi, T. J., et al, 2014a. UAVs for Humanitarian Missions:
Autonomy and Reliability. IEEE Global Humanitarian
Technology Conference (GHTC), San José, California USA,
October 10-13, 2014.

Tanzi, T. J., Isnard, J., 2014b. Robot d’intervention
multifonction d’assistance post-catastrophe. Réflexions sur un
drone "humanitaire". Revue de l’Electricité et de l’Electronique
(REE), 3/2014. pp 24-30.

Thórisson K. R., et al., 2005. Whiteboards: Scheduling
Blackboards for Semantic Routing of Messages & Streams.
AAAI-05 Workshop on Modular Construction of Human-Like
Intelligence, Twentieth Annual Conference on Artificial
Intelligence, Pittsburgh, PA, July 9-13, 2005

Wilkinson, P. and Cole, D. “The Role of the Radio Sciences in
the Disaster Management,” Radio Science Bulletin, vol. 3358,
pp. 45–51, 2010.

	Towards a new architecture for autonomous data collection
	1. INTRODUCTION
	2. Autonomy and its consequences
	2.1 Autonomy and system architecture
	2.2 Autonomy and dependability

	3. Architectural support
	3.1 Data sharing
	3.2 Subsystem organization and communications
	3.3 Runtime mechanisms
	3.4 Dynamic resources adaptation : an example

	4. design aND VALIDATION methodology
	4.1 Modelling and validation environment
	4.2 An example: a small drone

	5. conclusions and future work
	References

