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ABSTRACT: 

 

The common hippopotamus (Hippopotamus amphibius L.) is part of the animal species endangered because of multiple human 

pressures. Monitoring of species for conservation is then essential, and the development of census protocols has to be chased. UAV 

technology is considering as one of the new perspectives for wildlife survey. Indeed, this technique has many advantages but its main 

drawback is the generation of a huge amount of data to handle. This study aims at developing an algorithm for automatic count of 

hippos, by exploiting thermal infrared aerial images acquired from UAV. This attempt is the first known for automatic detection of 

this species. Images taken at several flight heights can be used as inputs of the algorithm, ranging from 38 to 155 meters above 

ground level. A Graphical User Interface has been created in order to facilitate the use of the application. Three categories of animals 

have been defined following their position in water. The mean error of automatic counts compared with manual delineations is 

+2.3% and shows that the estimation is unbiased. Those results show great perspectives for the use of the algorithm in populations 

monitoring after some technical improvements and the elaboration of statistically robust inventories protocols. 

 

 

1. INTRODUCTION 

Nowadays, wildlife suffers at a worldwide scale from important 

decrease of its populations, in particular because of multiple 

and increasing anthropological pressures as habitat degradation 

and intensive poaching (Linchant et al., 2014; Mulero-Pázmány 

et al., 2014). Monitoring animal species is therefore essential, 

and despite their advantages, classic pedestrian and aerial 

inventory methods raise several constraints: logistics (Jones et 

al., 2006; Linchant et al., 2014; Vermeulen et al., 2013), high 

costs (Jones et al., 2006; Koh et al., 2012; Linchant et al., 2014; 

Chabot, 2009; Vermeulen et al., 2013), safety (Sasse, 2003; 

Linchant et al., 2014), and inaccuracies (Laliberte & Ripple, 

2003; Abd-Elrahman et al., 2005; Jones et al., 2006; Chabot, 

2009). The perspective of drone use for wildlife monitoring 

could then allow a mitigation of these constraints. However, the 

huge amount of data acquired and the time needed to analyze it 

is a major setback (Linchant et al., 2014; Vermeulen et al., 

2013). 

 

Different automatic procedures to detect and count various 

animal species from aerial images are described in the literature. 

These algorithms save substantial time and efforts compared to 

traditional image interpretation based on manual and individual 

inspection of a large set of images. They also have the objective 

to be easy to use and generally lead to reliable results (Laliberte 

& Ripple, 2003; Abd-Elrahman et al., 2005; Linchant et al., 

2014). However, those procedures are not widely used yet in 

wildlife inventories (Laliberte & Ripple, 2003). Indeed, unlike 

computers, human observers can take a lot of characteristics 

into account such as texture, shape and context of an image for 

its interpretation (Lillesand & Kiefer, 2000). In addition, until 

now and most of the time, the majority of these initiatives have 

focused on the census of birds colonies because they gather in 

easily detectable groups (Laliberte & Ripple, 2003; Chabot, 

2009; Grenzdörffer, 2013; Abd-Elrahman et al., 2005). In order 

to apply those procedures to other animal species, some criteria 

have to be promoted: aggregation of individuals and high 

contrast between animals and their background (Laliberte & 

Ripple, 2003). As a concrete application, in this study, thermal 

infrared imagery provides a valuable contrast between hippos 

and their environment. Two other criteria to optimize automatic 

counting are an important animal concentration which are not 

too close together and a sufficient image quality (Cunningham 

et al., 1996). 

 

Several techniques have been developed and mixed into 

algorithms to elaborate automatic counting procedures of 

animals. First, different classification processes can be used, 

and are based on spectral properties of images (Grenzdörffer, 

2013; Abd-Elrahman et al., 2005; Laliberte & Ripple, 2003; 

Chabot, 2009), pattern recognition taking shape and texture into 

account (Laliberte & Ripple, 2003; Gougeon, 1995; Meyer et 

al., 1996; Quackenbush et al., 2000; Abd-Elrahman et al., 

2005), or template matching with the use of correlation and 

similarity degree between images (Abd-Elrahman et al., 2005). 

Some of those attempts also integrate criteria about shape of 

selected objects (Grenzdörffer, 2013; Abd-Elrahman et al., 

2005; Laliberte & Ripple, 2003). Another possible processing 

of images for automatic counts is the tresholding, which is part 

of segmentation techniques. This process aims to create a binary 

image by dividing the original one into object and background. 

This type of classification is based on the spectral reflectance 

and can be automatic or semi-automatic (Laliberte & Ripple, 

2003; Gilmer et al., 1988). Last, in the way to enhance images 

quality and contrast between animals and their background, 

several filtering techniques have been developed. Those 

processes include low-pass filters (smoothing raster values), 

high-pass filters (sharpening raster values), median or mean 

filters (Laliberte & Ripple, 2003). Such processing can be 

useful in particular cases to improve algorithms results. 

 

Examples of automatic counts performance provided in 

publications are presented in Table 1. 
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Table 1: Mean errors obtained by four authors for automatic 

counts procedures and used techniques. 
Authors Mean 

errors (%) 

Classification Segmentation/ 

thresholding 

Filtration 

Grenzdörffer 

(2013) 
2.4 - 4.6 x    

Abd-Elrahman 

et al. (2005) 
10.4 - 13.5 x    

Laliberte & 

Ripple (2003) 
2.8 - 10.2 x x x 

Gilmer et al. 

(1988) 
< 15   x   

 

In the case of common hippopotamus (Hippopotamus 

amphibius L.), species considered as vulnerable by the IUCN 

(Lewison & Olivier, 2008), it is quite common to find important 

groups, which can sometimes go up to 200 individuals, staying 

together in shallow waters (Delvingt, 1978). Again, the classic 

census protocols in that case present specific drawbacks 

(Delvingt, 1978). A great difficulty while counting these 

animals lies in their habit to be alternatively in dive and at the 

surface of water in the form of a whole visible animal or half 

submerged with two different parts possibly visible (head 

and/or back). 

 

This study aims to elaborate an algorithm for automatic 

detection and count of hippopotamus groups from thermal 

infrared images acquired by UAV, by integrating it into an 

application of the open source Quantum Geographical 

Information System Software (QGIS). 

 

2. MATERIAL AND METHOD 

Infrared thermal videos used to develop the algorithm were 

acquired with the Falcon Unmanned UAV equipped with a 

Tamarisk 640 camera (long-wave infrared: 8-14 µm) in 

Garamba National Park (Democratic Republic of Congo) in 

September 2014 and May 2015. Considering thermal infrared 

wavelength, bathing hippos have a very contrasting signature 

with surrounding water, providing interesting data for detection. 

The UAV flew a transect pattern at several altitudes between 38 

and 155 meters above ground level to cover a 300 meters side 

square area (9 ha) where a lot of hippos were known to live. 37 

images with important groups of hippos were then extracted and 

selected manually from 14 flights datasets, representing more 

than 11 hours of videos. The resulting images were 640 x 480 

pixels, DN (digital number) being coded on 1 byte (0 to 255) 

proportional to thermal reflectance (i.e. temperature). 

 

Ground truth reference data were created by visual counts and 

delineation performed by an observer who on screen digitized 

the outline of all the detected hippos. In all, 1856 hippos have 

been delineated by hand to calibrate algorithm input parameters. 

All geoprocessing were executed in a global Python script 

carried out with QGIS open source software, with a Graphical 

User Interface to enter parameters (Figure 1). The algorithm has 

been tested on four selected images, taken at different heights: 

39, 49, 73 and 91 meters above ground level. 

 

In order to facilitate the animal detection and counting, the 

selected images have been clipped to the portion containing 

hippos, surrounding areas being cut off. Those clipped images 

(Cl_im) are the starting point of the process. A flowchart of data 

processing is provided in Figure 2. 

 

 
Figure 1: Graphical User Interface into QGIS for the 

specification of parameters and the presentation of results. 

 

 
Figure 2: Flowchart of the data processing. 

 

After georeferencing the image in a relative coordinate system 

(in pixel unit), the first step of the algorithm consists in 

detecting local maxima within the Cl_im, by using a fixed 

circular window. This part of the algorithm is adapted from 

FUSION tool developed by McGaughey et al. (2004). Those 

local maxima (Loc_max) are supposed to correspond to 



 

centroids of emerged parts of animals. The search radius was 

fixed at 11 for the height of 39 meters and at 3 for the heights of 

49, 73 and 91 meters. Indeed, this parameter can be adapted, 

depending on the resolution of the raster and the contrast among 

pixels values. The chosen value of this radius has to be a good 

compromise between the detection of all hippos and the 

avoidance of too many resulting points. A threshold raster value 

is also used in order to avoid the creation of points 

corresponding to water areas. This threshold was fixed at 100 

for this research. In order to be sure that points correspond to 

different animals, a minimum distance between local maxima is 

also fixed. A value of 5 pixel units was retained. 

 

Then, isolines were generated in order to connect pixels with 

the same raster value, considering a certain interval between 

contour values (we used an interval of 3). Closed isolines were 

then transformed into polygons (Iso_polyg). 

 

Loc_max and Iso_polyg layers were then spatially joined, in 

order to link each local maximum to polygon containing it (n to 

n join). 

 

The next step consists in selecting polygons that (i) contain at 

least one local maximum and (ii) whose area and perimeter are 

between minima (min_area, min_perim) and maxima 

(max_area, max_perim) values. Those four parameters were 

expressed as regression equations, as explained below. 

 

When several polygons contain the same Loc_max, only the 

largest one is kept for the next step. These polygons are 

supposed to correspond to emerged parts of animals 

(Em_parts). A single animal can have one or two emerged 

part(s). Globally, three cases can be distinguished on images: 

large polygons corresponding to completely emerged animals 

(CEA, Figure 3a), pairs of small to medium aligned and close 

polygons corresponding to a single animal (PPSA, Figure 3b), 

and small isolated polygons corresponding to nearly immerged 

animals (NIA, Figure 3c). 

 

If a hippo is considered to be composed of two polygons, these 

two parts are supposed to be both close together, smaller than a 

completely emerged animal and have their main axis aligned. 

Polygons size, proximity and alignment criteria were applied to 

aggregate polygons pairs supposed to correspond to a unique 

hippo. Polygons size and proximity criteria were defined with 

regression equations presented below. For the alignment rule of 

polygons judged to be small, we have considered their relative 

orientation before merging them (Figure 4). It was necessary to 

build Minimum Bounding Boxes (MBB) around those small 

polygons to obtain their orientation characteristics. MBB are in 

this case the minimum enclosing rectangle for a polygon with 

the smallest area within which the entire polygon lies. Then, the 

criteria of position and alignment were built with the use of two 

angles. Firstly, the angle made by the longer axis of each 

polygon with the horizontal line was computed (ϑ0 and ϑ1 in 

Figure 4). The difference between those two angles constitutes 

the first angle parameter used in the algorithm: |Δϑ|. Secondly, 

the difference between two other angles is calculated (|α-ϑ0|): 

one is made by the line joining the centroids of the two 

polygons and the horizontal line (α in Figure 4), and the other 

corresponds to the angle of the longer axis of the first polygon 

with the horizontal line (ϑ0 in Figure 4). A maximal value of 30 

degrees was considered for those two angular parameters. 

 

As a result, the last part of the algorithm determines the number 

of animals represented by only one big polygon (CEA), the 

number of hippos corresponding to paired polygons (PPSA), as 

well as the number of the other small isolated spots (only head 

or back above water, NIA). 

 

 
Figure 3: a) Example of a completely emerged animal (CEA); b) 

Example of a pair of polygons corresponding to a single animal 

(PPSA); Example of a nearly immerged animal (NIA). 

 

 
Figure 4: Creation of Minimum Bounding Boxes (MBB) and 

representation of ϑ0, ϑ1 and α angles for the implementation of 

alignment rule between PPSA polygons. 

 

As mentioned above, six regression equations were computed 

and included in the algorithm in order to automatically estimate 

input parameters as a function of flight height. Data used for 

those regressions were based on the 37 images extracted from 

videos and the following manual digitization of 1856 hippos. In 

all, 32 different flight heights were represented among those 37 

images. The first resulting models are polynomial and linear 

equations respectively for area and perimeter parameters (black 

curves in Figures 5 and 6). For each of those four datasets, the 



 

32 values were divided in eight classes and the maximum (or 

minimum, according to the estimated parameter) value of 

area/perimeter was selected for each class to build four new 

regression equations (two polynomial and two linear ones 

again). Those four resulting equations (showed in red in Figures 

5 and 6) were used to estimate the polygon selection parameters 

in the application, in order to extend the range of selectable 

polygons and taking variability of measures into account as far 

as possible. The set of 1856 digitized hippos was then used to 

model the relationship between flight height and the threshold 

area between NIA and CEA polygons (Figure 7). For each 

image, this threshold area was computed as the mean value of 

upper confidence bound of NIA polygons area and the lower 

confidence bound of CEA polygons area. The digitized hippos 

were also used to estimate the maximal distance between the 

two parts of PPSA according to flight height (Figure 8). 

 

 
Figure 5: Polynomial regressions for the determination of 

maximal and minimal surfaces used in polygons selection. The 

red curves represent the final equations used as input 

parameters in the algorithm. 

 

 
Figure 6: Linear regressions for the determination of maximal 

and minimal perimeters used in polygons selection. The red 

lines represent the final equations used as input parameters in 

the algorithm. 

 

 
Figure 7: Polynomial regression of the evolution of threshold 

area between NIA and CEA polygons with flight height. 

 

 
Figure 8: Linear regression between flight height and the 

maximal distance between centroids of two paired polygons 

(PPSA). 

 

3. RESULTS 

The 4 images used to test the algorithm were acquired during 

the rainy season at altitudes ranging from 39 to 91 meters. At 

those altitudes, the estimated pixel ground sample distance is 

varying from 3.9 to 9.1 centimeters. 

 

Several intermediate results of the processing are illustrated in 

Figures 9 to 12 for image coded 1_39_flight46 (codification 

present in Table 2). The four used images are provided in 

appendix. The sample image is interesting as it illustrates the 

necessity to mask areas corresponding to the riverbank. This 

image was taken at 39 meters above ground level at 12:26. 

Figure 9 corresponds to the original image whereas Figure 10 

illustrates the clipping process and the generation of local 

maxima. Figure 11 shows local maxima and isolines, whereas 

Figure 12 contains manually digitized polygons and the 

polygons resulting from the automatic process with their 

corresponding local maxima. 

 

 

Figure 9: Input image before clipping. 

 



 

 
Figure 10: Input image after clipping and map of obtained local 

maxima (red dots). The green rectangle focuses on the zone 

represented in Figures 11 and 12. 

 

 
Figure 11: Local maxima (red dots) and isolines (in green) for 

the upper-right part of the input image. 

 

 
Figure 12: Manually digitized polygons (yellow) and 

polygons generated and selected by the algorithm (blue) with 

their corresponding local maxima (red). The blue arrow 

indicates an error of the automatic procedure, joining two close 

hippos as a single one. 

 

The total number of animals detected by the algorithm varies 

between 74 and 108 (Table 2). It shows a good agreement with 

reference values derived from manual counting: the error is 

ranging from -9.8% to +13.7%, with a mean value of +2.3%, 

which is not significantly different from 0 (p = 0.67). The 

correlation between total estimated and reference values reaches 

0.86 (Table 3). If we analyse the distribution of counts among 

the different classes (Table 3), we can observe a good 

concordance (estimated vs observed) for NIA values (r = 0.93), 

whereas the situation is less favourable for both PPSA (r = 0.48, 

not significant) and CEA counts (r = -0.72). 

 

Table 2: Comparison of manual and automatic counts of hippos on the four selected images: NIA (Nearly Immerged Animals), PPSA 

(Pairs of Polygons corresponding to Single Animals) and CEA (Completely Emerged Animals). Estimation errors are also provided. 

Image code 
Height 

(m) 

Manual count Automatic count Error 

NIA PPSA CEA Total NIA PPSA CEA Total 
 

1_39_flight46 39 34 44 27 105 37 15 56 108 +2.9% 

2_49_flight53 49 24 10 48 82 22 18 34 74 -9.8% 

3_73_flight53 73 24 8 41 73 27 3 53 83 +13.7% 

4_91_flight53 91 33 6 47 86 33 6 49 88 +2.3% 

Mean +2.3% 

 

Table 3: Correlation coefficients (and associated p-values) between manual and automatic counts. 

 NIA counts PPSA counts CEA counts Total counts 

Manual – automatic correlation 0.93 (p = 0.07) 0.48 (p = 0.52) -0.72 (p = 0.28) 0.86 (p = 0.14) 

 

 

 

4. DISCUSSION AND PERSPECTIVES 

4.1 Image processing 

The comparison between visual and estimated counts showed 

very similar results for the set of test images (unbiased 

estimations with error ranging from -9.8% to +13.7%). 

 

Few false positives local maxima were generated. But they were 

either contained in unselected polygons or not contained in any 

polygon, and thus they had no impact on the final estimation. 

The number of local maxima was strongly affected by the radius 

parameter. A high value minimizes the false positives but 

increases the risk of non detection of animals, especially the 

nearly immerged ones, which represent one third of the group. 

It is thus important to fix this parameter carefully. 

 

The shape of selected polygons (Em_parts) can be rather 

different from that of manual delineations. Furthermore, some 

very close hippos were an important issue to deal with. The 

range of parameters values used in the polygons selection 

process did not always permit to distinguish efficiently those 

problematic cases (example in Figure 12). 

 

Another weakness of the algorithm concerns the cases where the 

head of a hippo is not in the axis of its back (head turned on the 

side). Indeed, the relative alignment of neighbour polygons is 

involved in the aggregation rule. This criterion could be made 

more flexible, but false associations between shapes could 

become a more important source of error. 

 

For NIA, manual and automatic counts seem to give really close 

results (Tables 2 and 3). It is different for PPSA and CEA and 

both visual and automatic procedures show uncertainties 



 

identifying them. Nevertheless, those results tend to compensate 

and give a similar total headcount. Anyway, those assertions 

have to be confirmed by a test of the application on a larger 

dataset. 

 

In each image, the group of hippos has to be manually bounded 

by drawing a mask around it. This step is really important to get 

valid results. Indeed, ground and vegetation around the pool 

have a high reflectance in thermal wavelength and appear 

bright. Therefore the value of those pixels could interfere with 

identification of hippos and lead to false detections. A 

perspective could be the automation of the masking process in 

order to reduce manual operations. This should be possible with 

the consideration of both the size of template objects and the 

reflectance variation around them. 

 

The processing developed in this study does not use texture 

analysis or regular pattern recognition as other authors did 

(Laliberte & Ripple, 2003; Gougeon, 1995; Meyer et al., 1996; 

Quackenbush et al., 2000; Abd-Elrahman et al., 2005). Indeed, 

the provided images do not present enough texture variations 

compared to classical RGB images in high resolution. For the 

classification by pattern recognition, a major difficulty has to be 

taken into account: unlike animals in other studies, visible 

hippos in thermal imagery appear in various shapes and sizes 

because of their position in water. Building templates for 

recognition is then really complex. That is why only limits in 

surfaces and perimeters have been integrated in the algorithm 

because of this important variation. 

 

4.2 Conditions of use of the algorithm 

The very little difference between automatic and visual counts 

of hippos highlights the real interest and promising perspectives 

of the presented tools. But it now needs to be tested on a larger 

dataset corresponding to a wider range of conditions to confirm 

its real interest. Indeed, several limitations pointed out in the 

present study still have to be addressed. 

 

Gathering of 10 to 200 individuals is frequent for this species 

(Delvingt, 1978). The images used in this study thus totally 

match with hippo’s natural behavior. As results show it, the 

application is adapted for high concentrations of animals but 

still has to be tested on a larger dataset with various headcounts. 

 

According to the analysis of the whole set of thermal infrared 

data acquired above hippos during the two months in the field 

(September 2014 and May 2015), some practical implications 

can be proposed. We recommend doing flights during the rainy 

season (April to November) if possible. Indeed, large amount of 

chilly rainwater permits to get a better temperature contrast 

between hippos and their background during this period. We 

have also seen impacts of time of the day and weather on the 

visibility of hippos. However, our small dataset does not permit 

to determine the best combination of those factors for an 

optimal detection of hippos on infrared thermal imagery. 

 

Manual contouring to compute surfaces and perimeters were 

used to reckon polygon sizes for each image out of the total of 

37 acquired. The objective was to determine the sizes (in pixel 

unit) of the smallest and largest polygons as a base-line for the 

polygon selection in relation with height of the UAV. This 

calibration of input parameters was made in order to be flexible 

with flight altitude and permits to use images acquired from a 

large amplitude of heights, ranging from 38 to 155 meters. 

However, more robust regressions could be obtained with a 

more restricted range of heights and could lead to more reliable 

counting results. 

 

4.3 Exploitation of results 

Unlike the main other studies relying on a similar procedure, 

numbers of animals in this case is low, generally in the range 

from 101 to 102. In comparison, other studies (Table 1) mainly 

focus on birds populations, dealing with headcounts sometimes 

reaching thousands of individuals. An error expressed in 

percent is then maybe not the best way to judge of the quality of 

this method in comparison with others if we talk about the 

accuracy in number of individuals. 

 

Another thing to put in perspective is that the count itself is not 

completely representative of the real group size. Indeed, the 

algorithm processes single images giving instantaneous 

estimates in which only visible individuals at this moment are 

taken into account. As we have seen in the field, thermal 

infrared cameras are not able to detect heat sources under cover 

and even a thin water layer can hide animals. It thus does not 

allow us to determine the exact number of animals present 

within the area as it is a well-known fact that at least a fraction 

of hippos are fully under water (Delvingt, 1978). The 

calculation of a correction factor applied to the count from a 

single image could be realized to estimate the number of the 

entire population, including hippos under water. Delvingt 

(1978) has studied the diving rhythm of hippos to compute such 

a correction of counts and obtained a value of 1.25 in the case 

of Virunga National Park (DRC). This correction factor 

approach could also be replaced by an algorithm that would 

exploit the temporal series of images trying to track individual 

hippos during successive emergence phases. 

 

The further development of the tool could also concern the 

demographic description of the hippos groups. Indeed, on the 

basis of one pixel size, it could be possible to measure animals’ 

backs. Such a quantification of lengths could lead to the 

creation of a histogram presenting the distribution of 

headcounts in each age classes. 

 

4.4 Sensors and UAV improvement 

To improve ground truth reference, a double payload could be 

used on the UAV. Indeed, thermal infrared and high resolution 

real colors images acquired simultaneously could permit a better 

interpretation of acquired images. However, the combination of 

those two types of sensors on the Falcon Unmanned UAV is 

not possible for the moment. An automatic procedure 

integrating visible and near infrared imagery with thermal 

infrared could also be valuable, but there is a need to match all 

of those data with accuracy, which is not yet possible with our 

current techniques. Some improvements in the use and 

exploitation of infrared images could help in building such 

processing, notably in the georeferencing step. For the detection 

of hippos in large areas, a combination of infrared videos and 

RGB digital camera could be a useful solution: Franke et al. 

(2012) tried with success to first detect animals on infrared 

videos and then identifying species (red deer, fallow deer, wild 

boar, roe deer, foxes, wolves and badgers) and numbers of 

individuals with high resolution real colors images acquired 

simultaneously. As well, the use of high resolution thermal 

infrared photos instead of videos in low quality would also be a 

substantial technical improvement. 

 



 

Using a multicopter platform instead of a fixed wing UAV 

could also be a valuable solution for such a study. Actually, a 

multicopter would be useful to take advantage of a stationary 

position of the sensor in order to acquire a time series of images 

whose interest has been previously mentioned. 

 

5. CONCLUSION 

The development of UAV technologies for the monitoring of 

wildlife fauna will keep expanding during the coming years. 

The huge amount of data being one of the main drawbacks for 

the use of drones in natural resources management, the 

development of such algorithm is very important to create a 

viable monitoring system. Automation of image processing 

allows operators to save a lot of time, in particular for animal 

counts. Several notable advantages can be retained from this 

first algorithm attempting to automatically count hippos. First, 

the time spent by the operators to prepare and analyze the data 

is very reduced (limiting itself to the selection of images and to 

the manual demarcation of the group). The integration of the 

algorithm within a practical open source application with 

graphical interface to generate the resulting maps increases its 

added value as it is very easy to use and visualise. Furthermore, 

this method constitutes a standardized and reproducible 

procedure, avoiding the interference of a possible operator 

effect in the results. Finally, the parameters entered in the 

algorithm are modifiable to adapt to other situations or sensors. 

Indeed, all of those entry elements are defined by default but 

another sensor resolution could be used with a modification of 

local maxima entry parameters, just like polygons sizes if an 

operator would like to try an identification of hippos out of 

water during the night, for instance. 
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