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ABSTRACT: 
 
We designed a method for creating 3D models of objects and areas from two aerial images acquired from an UAV. The models are 
generated automatically and in real-time, and consist in dense and true-colour reconstructions of the considered areas, which give the 
impression to the operator to be physically present within the scene. The proposed method only needs a cheap compact camera, 
mounted on a small UAV. No additional instrumentation is necessary, so that the costs are very limited. The method consists of two 
main parts: the design of the acquisition system and the 3D reconstruction algorithm. In the first part, the choices for the acquisition 
geometry and for the camera parameters are optimized, in order to yield the best performance. In the second part, a reconstruction 
algorithm extracts the 3D model from the two acquired images, maximizing the accuracy under the real-time constraint. A test was 
performed in monitoring a construction yard, obtaining very promising results. Highly realistic and easy-to-interpret 3D models of 
objects and areas of interest were produced in less than one second, with an accuracy of about 0.5m. For its characteristics, the 
designed method is suitable for video-surveillance, remote sensing and monitoring, especially in those applications that require 
intuitive and reliable information quickly, as disasters monitoring, search and rescue and area surveillance. 
 
 

1. INTRODUCTION 

In the last few years, the use of unmanned aerial vehicles 
(UAVs) has increased exponentially, involving a growing 
number of applications in different areas (Sauerbier 2010), 
(Manyoky, 2011), (Kanistras, 2014). One of the key factors of 
the success of UAVs lies in the possibility of equipping them 
with imaging sensors (Vasterling, 2013). This makes UAVs 
particularly effective in surveillance, monitoring and remote 
sensing applications, because of their capability of exploring 
areas inaccessible or dangerous for a human being (Adams, 
2011). 
Among the numerous applications, 3D reconstruction plays a 
crucial role, since it is capable to provide the spatial distribution 
of the information we are interested in. In particular, realistic 
reconstructions of wide areas, regions of interest, buildings, 
objects etc. have revealed to be a fundamental instrument of 
analysis and understanding of the phenomenon in exam. 
Many techniques have been proposed in the literature for 
generating 3D models automatically by using an UAV properly 
equipped. Some of them are aimed to achieve very high 
accuracies, without (or partially) taking into account the aspect 
of the costs. In such techniques, LiDARs (Bisheng, 2015), 
laserscanners (Jutzi, 2013) or combinations of more different 
sensors (Masahiko, 2008) are generally used to improve the 
accuracy of the reconstruction. Also cameras can be 
successfully used for 3D reconstruction, permitting to limit the 
costs. However, often, for obtaining better accuracies, the aspect 
of computational time is neglected. For example, that is the case 
of reconstruction from multiple images (Mayer, 2008), or by 
using computationally costly algorithms (Huei-Hung, 2011), 
which can take minutes for generating the desired 3D model. In 
order to achieve good precision without sacrificing the 
computational time, many techniques rely on the help of 
auxiliary instrumentation (Wefelscheid, 2011), like inertial 
navigation systems (INSs) and global positioning systems 
(GPSs). However, these instruments can be quite expensive if 
they are required to be highly accurate. Some other techniques, 
instead, exploit some a-priori information like, for example, the 

intrinsic parameters of the camera (Stephen, 2009) or the entire 
acquisition geometry, in case of UAV equipped with stereo 
cameras (Haubeck, 2013). In practical cases, this information is 
often unavailable, so that such techniques are not suitable for 
some contexts. 
Unlike the approaches presented in the analysed literature, we 
tackled the problem of 3D reconstruction using an UAV, from 
the point of view of both computational time and costs, trying to 
achieve the best accuracy under these constraints. Thus, we 
designed a method for automatically extracting realistic 3D 
models of objects and regions of interest in real-time, using a 
very cheap instrumentation. Only a single cheap compact 
camera is mounted on the UAV, and no additional 
instrumentation (INSs, GPs etc.) is needed to achieve 
reconstruction. In addition, the a-priori knowledge of the 
intrinsic parameters is not strictly required.  
The designing of the method takes into account the whole 
process of creating the 3D model, from the choice of the flight 
and camera setup, to the presentation of the final output. Two 
main parts can be recognized within our method. The first one is 
a preliminary phase, which aims to correctly set the camera 
parameters and define the acquisition geometry, in order to 
acquire the best images for maximizing the global 
performances. The second one is the 3D reconstruction 
algorithm, which permits to extract the model of the scene in 
real-time, by using a couple of images of it and no additional 
auxiliary data. All the steps of the proposed algorithm were 
selected among the most common routines for 3D 
reconstruction present in literature, in order to achieve the best 
compromise between accuracy and computational time.  
The generated 3D model is a dense point-to-point, true-colour 
map of the scene, which gives the impression to be physically 
present within the reconstructed area. In addition, the model can 
be presented to the operator by exploiting whichever one of the 
main 3D visualization software, so that the point of view of the 
scene can easily be changed according to the specific needs. 
The designed 3D reconstruction method is suitable for a large 
number of fields, like urban planning, video surveillance, search 
and rescue, natural disasters monitoring, archaeology, etc. 



 

Its effectiveness was tested in a case of human work 
monitoring, and in a case of object recognition, within a 
construction yard. Very realistic and easy-to interpret 3D 
reconstructions were produced in real-time, demonstrating the 
efficiency of the proposed method. 
 

2. 3D RECONSTRUCTION METHOD 

The 3D reconstruction method we propose, is based on the 
triangulation of the objects/areas we are interested in 
reconstructing, starting from two images, acquired from 
different points of view. The images are taken by a camera, 
mounted on an UAV and guided over the region of interest 
(ROI). No additional equipment is necessary. The camera 
should be adjustable in focal length (f), aperture (a), exposure 
time (texp) and ISO. Nowadays, also cheap compact cameras fit 
these characteristics, so that an expensive imager is not needed. 
In addition, the limited weight of compact cameras and the 
absence of other instrumentation make small and cheap UAV 
perfectly suitable for our purpose. 
The geometry of the problem is shown in Figure 1, where h 
represents the flight altitude, f the focal length of the camera and 
b the baseline, i.e. the distance covered by the camera focus 
between the two acquisition instants, obtained through: 
 
          (1) 

 
where VUAV = UAV velocity. 
 rfr = camera frame rate. 
 
Note that VUAV can be assumed constant between the two 
acquisitions, since it is reasonable that the UAV does not 
change its velocity/trajectory significantly in the frame interval. 
 

 
Figure 1. Geometry of the problem. 

 
We define a 3D reference system for the points in the real 
world, which coincides with the camera system at the first 
acquisition instant. Such a system, depicted in red in Figure 1, is 
centered in the camera focus and has the x- and the y-axis 
directed along the largest and the shortest dimension of the 
camera sensor, respectively, and the z-axis coinciding with the 

optical axis, following the right-hand rule. The coordinates of 
the reconstructed 3D points will be relative to this reference 
system. We also define a 2D reference system (u,v) for the 
points in the first (second) acquired image, which we refer to as 
image system 1 (2). It is centered in the projection of the focus 
on the image plane and has the u-axis and v-axis directed as the 
camera x-axis and y-axis of the camera system, as depicted in 
Figure 1. Hereinafter, we maintain this notation for the 
reference systems. 
The proposed method can be divided in two parts: the design of 
the acquisition system and the 3D reconstruction algorithm. 
 
2.1 Design of the acquisition system 

Camera and acquisition geometry parameters influence the 
efficiency and fix the limitations of the 3D reconstruction 
methodologies. Thus, correctly setting them is a fundamental 
issue. Obviously, the correct choice strictly depends on the 
application, on the type of aircraft used, and on the available 
camera. We use some performance indicators, typical of 3D 
reconstruction, to choose the setting that maximizes the 
efficiency of the proposed method and to spot the main 
limitations. 
A list of the considered performance indicators, with the 
respective parameters involved in their calculation, is presented 
in Table 1. Note that computational time depends more on the 
reconstruction algorithm than on the camera setting, thus it is 
not treated in this section. 
 

Performance 
Indicator 

Acronym Parameters 

 
Ground 

resolution 

 
Gres 

Flight altitude 
Sensor resolution 
Focal length 
Exposure time 
Aperture 

 
3D model 
resolution 

 
3Dres 

Flight altitude 
Focal length 
Frame rate 
UAV velocity 
Disparity resolution 

 
Maximum 

reconstructable 
area 

 
Amax 

Flight altitude 
Sensor size 
Focal length 
Frame rate 
UAV velocity 

 
Maximum 

reconstructable 
height 

 
Hmax 

Flight altitude 
Sensor size 
Focal length 
Frame rate 
UAV velocity 

Computational 
time 

Tcom Sensor size 
Number of images used 

 
Table 1. Performance indicators considered in 3D 
reconstruction and parameters involved in their calculation 

 
Ground resolution fixes the minimum recognizable area at the 
lowest point in the scene. Naming Δx and Δy the Gres 
components along the largest and the shortest dimension of the 
camera sensor, respectively, they can be expressed in formula 
as: 
 

          (2) 

 

b =VUAV ⋅ rfr

Δx = h
f
⋅Du , Δy = h

f
⋅Dv



 

where f = focal length 
 h = flight altitude (with respect to the lowest point in 
  the scene) 
 Du, Dv = horizontal and vertical dimensions of a 
  single photodetector 
 
It is worth noting that the actual Gres can be worse than the one 
calculated with (2), since the acquired images can be blurred. 
Two sources of blurring are present. The first one is the motion 
blur, generated by the movement of the camera during the 
exposure time and quantifiable as: 
 
           (3) 

 
where: texp = exposure time. 
 
The second one is the optical blur, generated by the aperture of 
the diaphragm of the camera. Such quantities must be added to 
Gres for determining the ground resolution appropriately. 
3D model resolution, instead, defines the minimum 
reconstructable distance in the three dimensions. It means that 
two points, which are distant more than 3Dres from each other, 
are mapped in the same point in the extracted 3D model. 3Dres is 
defined for each spatial coordinate (Δx3D, Δy3D and Δz3D) as: 
 

                        (4) 

 
where u,v = pixel coordinates in the image chosen as 
  reference. 
 Hobj = object height from the ground. 
 Δd = disparity resolution (explained in Section 2.2). 
 b = baseline. 
 
3D model resolution should not be confused with ground 
resolution, since, for example, two points that are resolved in 
terms of Gres, but whose actual distance is less than 3Dres, will 
still be considered as two different points in the extracted 3D 
model, but they will be placed in the same position, so that they 
will be no longer resolvable.  
The maximum reconstructable area corresponds to the overlap 
area of the two images, expressed by the formula: 
 

      (5) 

 
where: U, V = largest and shortest dimension of the 
  camera sensor. 
 
Finally, the maximum reconstructable height corresponds to the 
highest distance from the ground at which the two images 
overlap and can be calculated as: 
 

             (6) 

 

Note that in (5) and (6) we are implicitly making some 
assumptions about the acquisition geometry, which will be 
presented below.  
In order to maximize the efficiency of the proposed method, we 
preliminarily set those parameters that permit us to improve 
some indicators, without affecting the others. First of all, we 
mount the camera on the UAV so that it looks at nadir. Such a 
choice not only simplifies the geometry of the problem 
considerably, but also ensures that the ground samples size, 
within the area of interest, is the same in the two acquired 
images. This improves both the average Gres and the accuracy of 
the reconstruction algorithm, since this is based on the 
recognition of similar features in both images, as we will see in 
Section 2.2. In addition, we orient the camera so that the largest 
dimension of the sensor is parallel to the UAV flight direction. 
This simple expedient permits one to maximize either Amax or 
Hmax without modifying any parameter. 
Then, once observed the scene illumination, determined the 
height range of the objects to reconstruct, and decided the flight 
altitude, we reduce the optical blur by fixing a large depth of 
field. This can be done independently from f and h, by 
decreasing a, even if it results in darker images, a problematic 
factor in presence of poor illumination. However, this problem 
can be overcome by increasing texp or ISO. The first choice is 
not advisable, since it also increases motion blur -as it is evident 
from (3)-, worsening either Gres or 3Dres. The second choice, 
instead, only produces some noise, which can be filtered in the 
reconstruction algorithm. Thus, increasing ISO is the best 
choice to maintain a good illumination while decreasing a. 
The main limitations in 3D reconstruction are due to the fact 
that, if f increases and h decreases, Gres and 3Dres improve, while 
Hmax and Amax decrease. Moreover, 3Dres also improves when b 
increases, while Hmax and Amax worsen. Since a high Amax is not 
necessary for reconstructing objects or portions of the entire 
scene, while good resolutions are desirable, higher values of f 
and b and lower values of h should be set. In particular, h 
imposes the more stringent constraint, since each coordinate of 
3Dres depends from it as a quadratic function. However, we 
cannot increase f and b and decrease h freely. In fact, a low Amax 
could result in the total or partial lack of overlap between the 
ROIs in the two images, making a complete reconstruction 
impossible. At the same time, a low Hmax could not permit the 
reconstruction of the highest objects. 
Moreover, some physical limitations occur in the choice of 
these parameters. In particular, b is constrained by the camera 
frame rate and by the UAV velocity (1), while h is prone to the 
aerodynamic laws. 
Summarizing the above-mentioned considerations, we suggest a 
robust empirical method for setting f, b and h correctly. First, 
we choose the lowest permitted h, to obtain a sufficient Amax 
and to equals Hmax to the maximum height we are interested in 
reconstructing. Then, we acquire the two images with the 
highest b, respecting the Amax constraint and according to the 
limitations imposed by VUAV and rfr. Finally, we calculate the 
highest value of f that results in the Amax and Hmax nearest to the 
fixed ones. This automatically maximizes Gres and 3Dres. 
 
2.2 3D Reconstruction Algorithm 

The 3D reconstruction algorithm we implemented is capable to 
create a 3D model from two images, acquired as specified in the 
previous section, without knowing the position and the 
orientation of the camera at the images acquisition instants 
(extrinsic parameters). It is based on the normalized 8-point 
algorithm [1], because this approach is a good compromise 
between accuracy and computational efficiency, in the absence 
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of the extrinsic parameters. The block diagram of the algorithm 
is shown in Figure 2. 
 

 
 

Figure 2. Block diagram of the proposed 3D reconstruction 
algorithm 

 
After acquiring the couple of frames, the operator selects in 
both images the object or the area we are interested in 
reconstructing. A portion of each image, centred on its 
respective object/area of interest is isolated (we will refer to 
them as P1 and P2, respectively). P1 and P2 should be rich of 
easily detectable features (like corner and edges), thus, their size 
can be small in case of highly-textured images, but it has to 
increase in case of poorly-textured images. 
Within P1 and P2, the points richest in features (keypoints, KPs) 
are detected, using the scale-invariant feature transform (SIFT) 
algorithm [2]. Then, the features of every KP are extracted and 
parameterized in form of a vector, again through the SIFT 
algorithm. Even if other typical feature extraction algorithms 
are computationally less expensive, like, for example, the 
speeded up robust features (SURF) (Bay, 2006), we preferred to 
use a slightly slower but more accurate algorithm. This is 
because the errors committed in detecting the KPs and 
extracting their features weight considerably on the successive 
step, i.e. the KPs matching, which, in turn, directly affects the 
computation of the fundamental matrix (Prince, 2012), which is 
the pivotal operation of the entire reconstruction algorithm. In 
addition, if we rely more on the extracted features, we can relax 
the point matching refinement phase -which can be quite 
expensive in terms of computational time- anyway achieving 
the required precision. 
Subsequently, the analogous KPs in the two image portions are 
matched, by searching, for each KP features vector of the first 
image, the nearest KP features vector of the second image. For 
the motivation explained above, we again sacrificed the 
computational cost for the sake of accuracy. In fact, a slower 
but exhaustive search of the best matches was chosen, instead of 

a faster but approximate search, like the one performed by the 
algorithms of the fast library for approximated nearest 
neighbors (FLANN) (Muja, 2013), commonly used in this kind 
of application. Then, the matched KPs whose feature vectors are 
more distant than a certain threshold are removed. The threshold 
is set between 0.9 and 1.5 times the average distance over all the 
couples of analogous KPs features vectors, depending on the 
total number of matched KPs. This step permits us not only to 
refine the found matches, but also to reduce the computational 
cost of the subsequent step, i.e. the outliers removal, since it 
will be performed on less couples of KPs. To remove outliers, 
the randomized RANSAC with sequential probability ratio test 
(R-RANSAC SPRT) algorithm (Matas, 2005) is used, since it is 
one of the speediest (Sunglok, 2009).  
With the remaining matched KPs as input, the normalized 8-
point algorithm is run. It gives as output an estimation of the 
fundamental matrix (F). It is worth noting that we have 
neglected the effect of lens distortion, since this phenomenon is 
very limited in compact cameras. This permits one to 
considerably simplify the calculation of F.  
The estimated value of  F is used  to rectify the two images, i.e. 
to transform them, through a projective homography, so that the 
rows of the first image are aligned with the analogous rows of 
the second one. Note that rectification can be precise (up to a 
scale factor) only if the photodetectors size and the offset 
between the optical axis and the image centre, which compose 
the camera intrinsic parameters together with the focal length, 
are known. Conversely, rectification is precise up to a projective 
transformation. To limit computational time, rectification is 
performed only for the area of interest. 
On the two rectified sub-images, the disparity map is calculated. 
With the word disparity we refer to the horizontal displacement 
between the analogous points of the two considered sub-images 
-note that no displacement is present along the vertical 
dimension, after rectification. The first step for calculating the 
disparity map is to match the analogous points. Since we are 
interested in a realistic reconstruction, this step must be 
performed for all the points of the two sub-images, to avoid 
“holes” in the 3D model and, thus, to obtain a dense 
reconstruction. The point matching is executed by means of the 
semi-global block-matching algorithm (SGBM) (Hirschmuller, 
2007), which has proven to be one of most reliable solutions, 
among the real-time algorithms capable to provide dense 
disparity maps (Scharstein, 2002). 
Finally, the 3D reconstruction of the area of interest is obtained, 
from the disparity map, by triangulation: 
  

       (7) 

 
where u, v = 2D coordinates of the point to be reconstructed, 
  expressed in the image system 1. 
 x, y, z = coordinates of the reconstructed point, 
  expressed in the chosen 3D reference system. 
 
The algorithm also creates a PLY file of the 3D model. This 
format permits us to associate the coordinates of every 
reconstructed point to its colour intensity values (RGB). This 
makes the 3D model more realistic. The PLY format can be 
read by all the most common 3D visualization software, so that 
the 3D model can be easily presented and used by the operator. 
 

3. RESULTS 

In order to illustrate the potential of the proposed method, we 
report an example of application in the monitoring of a 

x = b ⋅u
d

, y = b ⋅ v
d

, z = b ⋅ f
d



 

construction yard. The aim of the activity was to extract the 3D 
model of some areas to monitor the progress of the works, and 
the 3D model of some objects present within the yard, to 
recognize them. 
The camera we mounted on the UAV is a Canon IXUS 220HS, 
a cheap compact camera with 4000x3000 pixel resolution, that 
permits to adjust the main acquisition parameters. 
To evaluate the performance of the method in a critical case, we 
chose a high value of h (120m). Since we did not know exactly 
where the objects of interest were, we desired an Amax of about 
75%. b is constrained to about 10m from the minimum UAV 
velocity (about 35m/s) and from the frame rate, which is not 
adjustable and equal to 3.4Hz. Once b and h were fixed, we 
chose the highest f compliant with the required Amax, i.e. 
capable to ensure the 75% of overlap between the two acquired 
images. Considering that the camera sensor is a CMOS 1/2.3, 
i.e. it is 1/2.3 inches large on the diagonal, it is easy to find that 
U ≈ 6.6mm. Therefore, from Equation (5) we found f ≈ 20mm, 
which is less than the maximum focal length of the camera and, 
thus, it could be chosen. No problems arise from the choice of 
Hmax, since, for h = 120m, all the objects in the overlapped area 
can be entirely reconstructed. a and texp were set to the 
minimum (F# = f/5.9 and 1/2000s, respectively) for limiting 
optical and motion blur, while the ISO was set to 800 to 
enhance the illumination. 
 
3.1 Qualitative analysis of the results 

In Figure 3(a) and 3(b), two images of an area of interest are 
shown. Note that it is impossible to determine which are the 
highest/lowest parts of the scene, and, thus, to evaluate the 
advances in excavations. We gave them as input to the 
reconstruction algorithm, obtaining the disparity map, shown in 
Figure 3(c), where higher values tend to darker shades of red 
and lower values to darker shades of blue. The occlusions, i.e. 
those points for which the disparity cannot be calculated 
because they are covered in one of the two images, are 
represented in black. From the disparity map, the algorithm 
extracted the 3D model and stored it in a PLY file. In Figure 4 
the model is presented by using a 3D visualization software. 
The 3D reconstruction is very realistic, allowing the operator to 
evaluate the state of progress of the work rapidly and clearly, as 
if he were physically present within the yard. 
 

 
 

Figure 3. First (a) and second (b) image of the area of interest, 
and disparity map (c) -lower values tend to dark blue, higher 

values to dark red and occlusions are depicted in black 

 

 
 

Figure 4. 3D model of the area of interest 

 
In Figure 5(a) and 5(b) two isolated portions of a couple of 
images of the yard, containing an object of interest, are shown. 
We ran the reconstruction algorithm on the two image portions, 
to obtain more information about such an object. The disparity 
map of the examined portion of image is shown in Figure 5(c), 
while the 3D model is shown in Figure 6. The level of 
understanding is highly enhanced and the object is easily 
recognizable as an excavator, from the wide cockpit and from 
the mechanical arm. Also the position of the object, on the edge 
of a dig, stands out clearly. 
 

 
 

Figure 5. First (a) and second (b) image of the object of interest, 
and disparity map (c) -lower values tend to dark blue, higher 

values to dark red, and occlusions are depicted in black 

 
3.2 3D reconstruction accuracy 

The absence of additional instrumentation on board the UAV 
and, in particular, of a GPS, did not permit us to exhaustively 
evaluate the accuracy of the extracted 3D model, as the 
coordinates of the 3D reconstructed points are expressed in the 
camera reference system, but the position of the UAV was not 
known. However, we knew the flight altitude, so that we were 
able to calculate the error committed in calculating the z-
coordinate, which is also the error committed in determining the 
altitude. 



 

Hence, we computed the average absolute error on the altitude 
(EA), over a group of control points at ground level, whose 
actual altitude is zero. We obtained EA = 0.56m. Such a result 
exceeds almost 5 times the theoretical resolution Δz3D = 0.12m, 
calculated from (4) mostly because of the errors in measuring 
the baseline and the flight altitude. However, it is sufficient 
enough for the case in question. The accuracy can be further 
improved by reducing the above-mentioned errors. 
 

 
 

Figure 6. 3D model of the object to recognize 

 
3.3 Computational time 

Finally, we evaluated if the real-time requirement is satisfied. In 
critical scenarios, an operator should have the 3D model 
available almost instantaneously, after selecting the area of 
interest. Thus, we decided to tolerate a delay of at most 1sec in 
order to affirm that the algorithm is working (nearly) in real-
time. 
Obviously, the computational time increases with the size of the 
area of interest. Thus, a correct evaluation should aim to 
determine for which sizes of the area of interest the real-time 
requirement is achieved. For this purpose, we ran the 
reconstruction algorithm several times, for different sizes of P1 
and P2. The machine on which we performed the evaluation is a 
PC, equipped with an Intel Core i7 CPU at 2GHz and 8GB 
RAM, which use Windows 7 at 64bit as operative system. 
We observed that, for areas of at most 1000x750 pixels, the 3D 
model was produced in less than 1sec, so that we can consider 
the real-time performance achieved. It is worth noting that, with 
the chosen acquisition geometry parameters, a ROI of 1000x750 
pixels corresponds to an area of about 10x7.5 meters at the 
ground level, which is large enough to focus on man-made 
objects or small specific areas.  
 

4. DISCUSSION 

The obtained results have proven that the proposed method is 
very effective, both in terms of reliability and interpretability of 
the produced 3D models, and in terms of computational time. 
Nevertheless, some inaccuracy factors are present. One of these 
factors is the presence of some occlusions, which results in 
“holes” within the 3D model. Occlusions can be avoided 
directly, by reconstructing the scene from more than two 
images, or indirectly, by interpolation. Unfortunately, both 
methods are computationally demanding and, thus, not suitable 
for real-time applications. However, when the flight altitude is 
quite high, like in the case we examined, the phenomenon of 
occlusion is not so significant, since the two images are less 

prone to parallax, so that the amount of “holes” in the 3D model 
is low. 
Another inaccuracy factor is the not perfect flatness of low-
texturized flat surfaces of the scene, which is due to mismatches 
in the disparity map calculation, generated by the SGBM 
algorithm. More reliable algorithms exist [4], but the larger 
amount of computational time they require does not compensate 
the improvement in matching precision. 
The achievement of real-time performance, jointly with the 
good accuracy of the 3D model, demonstrates that the choices 
made in implementing the reconstruction algorithm are 
appropriate. Thus, the approach of stressing the procedures for 
features extraction and matching of the KPs in terms of 
accuracy, while relaxing the outliers elimination and the 
disparity map calculation, can be used as a guideline when 3D 
reconstruction has to be performed accurately but under the 
real-time constraint. 
 

5. CONCLUSION 

A method for creating realistic 3D models from aerial images, 
acquired from an UAV, was presented. It is capable to produce 
a dense and true-colour reconstruction of an object or a region 
of interest, from a couple of images, automatically and in real-
time. In addition, the method is suitable to work with very 
cheap instrumentation, consisting uniquely of a compact 
camera, and without knowing the intrinsic parameters a-priori.  
The method involves the entire process that leads to the creation 
of the 3D model, so that every factor that can improve the 
performance is adjusted. In fact, either the design of the 
acquisition system or the 3D reconstruction algorithm are taking 
into account. The former to acquire the best couple of images 
from which generating the 3D model, the latter to output it with 
the maximum accuracy achievable under the real-time 
constraint.  
The effectiveness of the method was illustrated by testing it on 
an experimental data set acquired over an area interested by a 
construction yard. The produced 3D reconstructions of both 
objects and areas of interest are very realistic and permitted us 
to recover additional information, not directly obtainable from 
the 2D images. In addition, the real-time requirement is 
satisfied, since 3D models of quite large areas can be generated 
in less than one second. 
Its characteristics make the designed method particularly 
suitable for remote sensing and video-surveillance applications, 
especially in those contexts where easy-to-interpret models of 
areas, that are not directly explorable by human being, are 
needed in a short time, as, for example, in natural disaster 
monitoring, in search and rescue and in automatic area 
surveillance. 
Future studies will aim to solve the problem of occlusions, by 
implementing a reliable real-time reconstruction algorithm 
based on more than two images, and to further improve the 
accuracy of the 3D model.  
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