
UAV-BASED ACQUISITION OF 3D POINT CLOUD - A COMPARISON OF A LOW-COST
LASER SCANNER AND SFM-TOOLS

D. Mader∗, R. Blaskow, P. Westfeld, H.-G. Maas

Technische Universität Dresden, DE-01062 Dresden, Germany
Institute of Photogrammetry and Remote Sensing

(david.mader, robert.blaskow, patrick.westfeld, hans-gerd.maas)@tu-dresden.de
http://www.tu-dresden.de/ipf/photo

KEY WORDS: Unmanned aerial vehicle, 3D point cloud, LIDAR, structure from motion,laser scanning range finder, RGB camera

ABSTRACT:

The Project ADFEX (Adaptive Federative 3D Exploration of Multi RobotSystem) pursues the goal to develop a time- and cost-efficient
system for exploration and monitoring task of unknown areas or buildings. A fleet of unmanned aerial vehicles equipped with appropri-
ate sensors (laser scanner, RGB camera, near infrared camera, thermal camera) were designed and built. A typical operational scenario
may include the exploration of the object or area of investigation by an UAV equipped with a laser scanning range finder to generate a
rough point cloud in real time to provide an overview of the object on a ground station as well as an obstacle map. The data about the
object enables the path planning for the robot fleet. Subsequently, the object will be captured by a RGB camera mounted on the second
flying robot for the generation of a dense and accurate 3D point cloud by using of structure from motion techniques. In addition, the
detailed image data serves as basis for a visual damage detection on the investigated building.
This paper focuses on our experience with use of a low-cost light-weight Hokuyo laser scanner onboard an UAV. The hardware com-
ponents for laser scanner based 3D point cloud acquisition are discussed, problems are demonstrated and analyzed, and a quantitative
analysis of the accuracy potential is shown as well as in comparison with structure from motion-tools presented.

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are small and versatile air-
crafts at a reasonable price. Their modular structure allows sim-
ple and time-saving adjustments for certain requirements and sim-
plifies the maintenance. Due to these characteristics, UAVs find
large interest as a tool for a wide spectrum of civil applications
such as exploration, monitoring, inspection or rescue tasks as
well as large-scale aerial photogrammetry. The interdisciplinary
Project ADFEX (Adaptive Federative 3D Exploration of Multi
Robot Systems) shall carry out the ambitious goal of data acqui-
sition for exploration and monitoring tasks by an autonomous op-
erating group of flying robots. Three robots have been developed
and constructed using standard sensors for navigation and for ob-
stacle detection (GPS, IMU, ultrasonic sensors). In addition, the
UAVs are equipped with special sensors for acquisition of differ-
ent tasks, which can be adapted to different applications. A laser
scanning range finder (LSRF) enables a real-time generation of
3D point clouds with reduced accuracy to provide an overview of
the object and to facilitate obstacle mapping and path planning.
Images captured with RGB-, near-infrared and thermal-infrared
cameras form a basis for the reconstruction of more accurate 3D
point clouds by using structure from motion (SfM) processing
methods. A cost and time efficient exploration and monitoring
should be achieved by a simultaneous task-sharing flight of the
three robots with a continuous two-way data stream between the
robots and the ground station. More information can be found
on the websitehttp://www.adfex.eu/. Other studies also at-
tend on UAVs equipped with light-weight imaging sensors. In
(Ahmed et al., 2008) UAVs were utilized as aircrafts, which were
flying at a very low altitude to get high resolution images of the
ground. Based on these images, victims in disaster areas can be
detected and rescued. Israel (2011) described a thermal detec-
tion system for saving lives of fawns in meadows on basis of
images captured by a thermal camera mounted on an UAV. An
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efficient usage for monitoring of soil erosion is shown in (Eltner
et al., 2013), where an UAV equipped with a camera was used
for data acquisition. The authors in (Roca et al., 2014) produced
3D point clouds for building assessment with a combination of
light-weight laser scanning range finder and an unmanned air-
craft. A processing chain for operator guidance through an UAV
based building reconstruction by the help of SfM techniques is
described in (Daftry et al., 2015).
This paper will focus on our experience in generating 3D point
clouds from low-cost laser scanner data in comparison to SfM
techniques on basis of RGB images, both mounted on UAVs. The
first part presents a brief overview about the specification of the
sensors mounted on the UAV and the flying platform itself. The
second part deals with the acquisition and processing of 3D point
clouds as well as an analysis of the results. Finally, this constri-
bution will finish with a conclusion, an outlook and future work.

2. HARDWARE

2.1 Unmanned Aerial Vehicle

Figure 1: UAV Cadmic Goliath Coax 8 frame.

As part of the project ADFEX, three flying robots have been de-
signed and built. The basic construction of each robot consists
of a Cadmic Goliath Coax 8 frame with four cantilever arms and
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Figure 2: (a) Image of the investigated bridge. (b) Overview of the entire3D point cloud based on data from LSRF.

eight coaxial mounted rotors (Figure 1). For the determination
of the robots position and orientation, the raw data of a single-
frequency GPS-receiver u-blox LEA-6T and an IMU-module 10-
DOF-IMU ADIS16407 are processed. The advantage of the mod-
ular structure of the robots in comparison to black box systems
is the easy access to every component in case of maintenance or
emergency. The payload is about 1 kg, which is sufficient in order
to carry passive or active 2D/3D sensor systems at a reasonable
flight time of about 10 min to 15 min per battery charge.

2.2 Hokuyo UTM-30LX-EW

One of the platforms is equipped with a laser scanner UTM-
30LX-EW from Hokuyo (Figure 3a). It is a 2D laser scanning
range finder (LSRF), capturing distances in a plane. The dis-
tance measurement unit operates according to the time-of-flight
principle. Due to the low weight of only 210 g and the com-
pact size (62 mm×62 mm×87.5 mm), the LSRF is predestinated
to be used on UAVs. The field of view is 270◦ with a resolu-
tion of 0.25◦, which results in 1080 distance measurement per
line during a 1/40 seconds. The LSRF works in a range of 0.1 m
up to 30 m with an accuracy of 30 mm to 50 mm (specified by
manufacturer). An important fact for subsequent error analysis
is the elliptical laser footprint with a beam divergence of about
1.0◦×0.1◦, which is rotating during a scan (Figure 3b).
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Figure 3: (a) Laser scanning range finder Hokuyo UTM-30LX-
EW (Hokuyo, 2014a). (b) Schematic representation of the laser
beam footprint (specified by manufacturer); the figure shows the
effect of a rotating elliptical laser beam profile (Hokuyo, 2014b).

2.3 AVT Prosilica GT3300C

For high quality image acquisition, a CCD camera 3296×2472 px
Prosilica GT3300C (Figure 4) from Allied Vision Technologies
is used. The pixel size is 5.5 µm, and the maximum frame rate is
14.7 images per second. With a weight of 314 g for the camera

body and dimensions of 121 mm×59.7 mm×59.7 mm, it is still
suitable for use on UAVs with a sufficient payload. For the cap-
ture in this contribution, a lens with a fixed focal length of 20 mm
was used. This sensor-lens combination (crop factor = 1.91) is
equivalent to a full format sensor and a focal length of 38.19 mm.

Figure 4: Prosilica GT3300C RGB camera.

3. CALIBRATION

To receive high-quality results, a calibration of the entire system
and the sensors is indispensable. An entire system calibration
comprises the lever arm as well as the boresight angles between
the coordinate systems of the LSRF, the camera and the UAV’s
navigation sensors. The sensor calibration also includes the in-
terior parameters such as camera lens distortions or distance cor-
rections for the LSRF. Both were carried out simultaneously in an
integrated self-calibration strategy to guarantee a correct calcula-
tion with different observation types. An adaptive fully integrated
and modularly structured bundle adjustment is shown in (Mader
et al., 2014), which was extended with geometric and stochastic
models for the determination of lever arm and boresight angles
for the particular sensor-UAV combination.

4. 3D POINT CLOUDS BASED ON LSRF DATA

4.1 Acquisition and data processing

As research object a bridge (Figure 2a) with dimensions of 12 m
in width, 135 m in length and 8 m in height, was selected. Scans
alongside the bridge with low speed of the UAV guaranteed a
sufficient number of scan lines for a good representation of the
bridge in LSRF data. In total 20,000 scan lines were recorded
in a flight-time of approximately 10 min with an average altitude
of 5 m and an average UAV-object distance of 12 m. Additional
flights underneath the bridge were also flown for test purposes,
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Figure 5: Horizontal profile of pillars from TLS (gray)- and LSRF (blue, red) point cloud with: (a) incorrect yaw angle measurements.
(b) corrected yaw angles by approximate correction terms. The pillars are 14.1 m in length and 1.4 m in width.

but as expected the LSRF measurement could not be used due
to GPS signal loss. As stated above, the LSRF provides 40 scan
lines per second, each with 1080 distance and intensity measure-
ments. Each scan line of the LSRF and the UAV pose informa-
tion gets a timestamp for synchronizing the acquired data. Due to
the fact that the LSRF and navigation sensors are not hardware-
triggered and thus not congruent, the pose of every scan line had
to be linear interpolated depending on the timestamps. For 3D
point cloud generation, the first step is the conversion from mea-
sured spherical coordinates (distanceD, horizontal angleα, ver-
tical angleβ) into the local laser scanner coordinate system re-
spectively the sensor coordinate system (scs). In this particular
case (the used LSRF performs 2D scans) the vertical angle com-
ponentβ and thus the resulting Z-component are zero in the scs
system.

X
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sinα
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 (1)

where
D : measured distance from LSRF
α : horizontal deflection angle
β : vertical deflection angle (:= 0)

Subsequently, the point coordinates are transformed into the UAV
coordinate system (rcs - robot coordinate system) by using the
calibrated lever arm and boresight angles.

X
rcs = Xla +R

rcs
scs ·X

scs (2)

where
Xla : lever arm in roboter coordinate system (rcs)
R

rcs
scs : rotation matrix of boresight angles

X
rcs : object point in roboter coordinate system (rcs)

Finally, on basis of the navigation data the measured points are
mapped into the WGS84 reference frame. For that the point co-
ordinates are transformed into the navigation system (north-east-

down coordinate system - ned), with

X
ned = Rz(ψ) ·Ry(θ) ·Rx(φ) ·X

rcs (3)

where
φ, θ, ψ : orientation angles based on IMU measurements
X

ned : object point in navigation coordinate system (ned)

and from north-east-down in the WGS84 (wcs - world coordinate
system) with:

X
wcs = X

wcs
ned + (Ry(lat+

π

2
) ·Rz(lon))

T
·X

ned (4)

where
lat : geographical latitude
lon : geographical longitude
X

wcs : object point in WGS84 coordinate system (wcs)
X

wcs
ned : UAV-position in WGS84 coordinate system (wcs)

The final coordinates results from an addition with the corre-
sponding UAV-position. A detailed description of the transfor-
mation between the robot coordinate system and the WGS84 can
be found in (B̈aumker and Heimes, 2001).

4.2 Result

The generated 3D point cloud (Figure 2b) was geo-referenced by
the LSRF distance measurement unit as well as the UAV GPS-
position and includes about 1 million points (bridge only). Point
spacing in scan line direction was approximately 5 cm for an ob-
ject distance of about 10 m. Due to the quite steady and slow
flying speed, the line distance reached an average of 6 cm, which
resulted in a point density of about 333 points per squares me-
ter. Important object details such as bridge pillars, the roadway
and the general shape of the bridge are well recognizable in the
data. Errors in the LSRF and navigation sensor data as well as
in the lever arm and boresight angles have a direct influence on
the quality of the 3D point cloud. GPS and IMU measurement
errors have the largest influence, whereas the error in the LSRF
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Figure 6: (a) Color-coded absolute distances between LSRF and TLS point clouds obtained by CloudCompare. (b) Histogram of
absolute distances. (c) Good represented part of the bridge by LSRF points. (d) Bad represented part of the bridge by LSRF points
caused by inaccurate IMU angles in lateral direction. Red points are the flight path of the UAV.

distances (̃30 mm to 50 mm) is negligible. The lever arm and
boresight angles, which were determined by an appropriate cali-
bration strategy, have also a low influence. The weakness is ob-
viously the accuracy of measured GPS-heights (Figure 7a), how-
ever it can be improved by an additional barometric altitude mea-
surement, as one can see in Figure 7b. In Figure 5a, a horizontal
section through the bridge pillars is shown to illustrate the im-
pact of inaccurate yaw angles. This effect was probably caused
by the influence of electromagnetic fields from the UAV’s elec-
tronic components to the magnetometer. The torsion is clearly
evident in comparison to a terrestrial laser scanner (TLS) point
cloud, which was captured with a high-precision Z&F Imager
5006 laser scanner and used as reference. A rough correction
term for the yaw angles was determined by an alignment of the
pillars horizontal profile from LSRF point cloud to the TLS point
cloud and considered in the processing chain of UAV point cloud
generation (Figure 5b). The corrected point cloud still contains
lateral GPS-inaccuracies. For quantifying this fact, a compari-
son between the LSRF and TLS point clouds was done. There-
for, the LSRF point cloud was transformed in two steps onto the
TLS point cloud. First step is a coarse alignment with three bet-
ter more homologous points and second step is the fine regis-
tration by an iterative closest point (ICP) algorithm. Afterwards
the cloud to cloud distances were calculated. The result shows
a sufficient inner geometrical accuracy for a rough point cloud
(Figure 6a). The LSRF point cloud shows a deviations root mean
square value (RMS) of about 31.7 cm, with2/3 of all points hav-
ing deviations less than 29.4 cm. Figure 6b show the distribution
of the deviation compared to the TLS point cloud. These lateral
effects might be reduced by a stronger weighting of the IMU ac-
celeration measurements in the GPS/IMU data processing. Other
GPS based approaches such as real time kinematic (RTK) or dif-
ferential GPS (DGPS) are also possible shown in (Stempfhuber
and Buchholz, 2011) and (Heredia et al., 2009). The expected
3D platform position accuracy is about few centimeter for both.
However, RTK and DGPS navigation are not robust for signal
loss caused by shadowing effects. Due to this fact, an addi-
tional improvement of the used navigation solution may be ob-
tained from sensors like a navigation camera in a visual SLAM
approach similar to (Georgiev and Allen, 2004). A further as-

pect for enhancement would be an appropriate magnetometer cal-
ibration as described in (Gebre-Egziabher, 2007, Dorveaux et al.,
2009, Metni et al., 2006) or improved protection against signal
interfering radiation through EMI shields. Figure 6d discloses a
major problem caused by direct dependencies of navigation solu-
tion, in this case the IMU angles. Nevertheless, Figure 6c shows
a well captured bridge part and confirms the potential of this cap-
turing system benefiting from smaller direction changes of the
UAV. Despite the above mentioned problems, the generated 3D
point cloud is suitable for a good overview of the object or for
obstacle avoidance.

(a)

(b)

Figure 7: Effects of inaccurate GPS-height measurements: (a)
LSRF point cloud with GPS-heights. (b) LSRF point cloud with
barometric heights.



Figure 8: RGB-colored 3D point cloud from SfM.

5. 3D POINT CLOUDS BASED ON IMAGE DATA

5.1 Acquisition and data processing

In a second flight campaign, the bridge mentioned above was im-
aged by a RGB camera rigidly mounted on the UAV. The entire
flight-time for two flights alongside the bridge plus flights around
all four bridge pillars was 80 min. About 500 images were cap-
tured with an overlap of at least 80 % in flight direction. To ensure
an optimal image quality including sharpness and homogenous
brightness during the complete flight, the balance between aper-
ture, exposure time and gain is important. A too long exposure
time leads to blur effects caused by the motion and vibration of
the flying platform. To receive optimal pictures for further pro-
cessing with SfM methods, aperture and gain was coordinated.
During this procedure, too small aperture values as well as too
high gain values were avoided. The bridge was reconstructed on
basis of images only by SfM-tools, in this case with the commer-
cial software package Agisoft Photoscan. The general principle
of SfM has often been presented in literature like (Koenderink
and Van Doorn, 1991), (Beardsley et al., 1997) and (Pollefeys et
al., 2000). For the presented reconstruction no additional prior in-
formations such as GPS positions or image sequence details are
used during the matching process. SfM techniques provide 3D
object informations from overlapping image sequences. Knowl-
egde about inertial information from the captured object or cam-
era poses are not necessary but can reduce processing time and
wrong camera pose estimation. Initially, a feature point measure-
ment in every image was carried out by a feature detection opera-
tor such as SIFT (Lowe, 1999) or SURF (Bay et al., 2008). After
pairwise matching based on detected features, the exterior orien-
tations of the images and a sparse point cloud were reconstructed.
The final results of the procedure were a dense point cloud and
refined exterior orientations.

5.2 Result

The resulting RGB-colored 3D point cloud shown in Figure 8
consists of 13 million points (bridge only) and represents the
bridge in a high degree of detail. To analyze the geometrical ac-
curacy, a comparison with the TLS reference point cloud was per-
formed. Therefore the same procedure as in section 4.2 was car-
ried out. The color-coded deviations between both point clouds
are shown in Figure 9a. The deviations RMS value is 4.9 cm, with
2/3 of the SfM point cloud having deviations less than 4.1 cm
(Figure 9b). These deviations can be explained on the one hand

by a suboptimal capture setup (only one row of images), which
has a bad effect to the SfM error propagation. And on the other
hand the largest deviations can be found at points near discontin-
ues underneath the bridge (Figure 9c) caused by a lack of texture
and brightness in the images. The shown result is a good data
basis for any further processing to a meshed 3D visualization for
use within 3D city model. The quality of the point cloud is also
sufficient for measurements in the object and for building recon-
struction. The processing and evaluation was performed with the
open source project CloudCompare. Beyond measuring in the
point cloud, there is the possibility to use the images (including
their improved georeferencing information) for visual inspection
such as damage detection/localization on buildings (Figure 9d).

6. CONCLUSION

The paper presents and compare the generation of 3D point clouds
on the basis of data from a low-cost LSRF and a RGB camera
mounted on a UAV. Properties of the resulting point clouds are
presented in Table 1. A processing chain from raw data to 3D
object points was shown in an overview as well as remarks for
improvements was shown. A comparison of the LSRF with a
TLS reference point cloud provides a good estimate of the ac-
curacy potential. A real-time generation of a coarse point cloud
based on measurement data of the presented LSRF system is pos-
sible. The resulting point cloud with RMS deviations of about
32 cm is sufficiently to give an overview of the measured object
and may also be used for path planning and obstacle avoidance.
However, the quality of the LSRF point cloud depends directly
on the quality of the UAV’s positioning devices, so that the navi-
gation solution should be improved for better results. In a second
campaign, the bridge was captured by a RGB camera mounted
on a UAV. On basis of the overlapping images, a RGB-colored
3D point cloud was generated. A comparison with the TLS refer-
ence point cloud showed a high geometrical quality in the order
of 5 cm.

Sensor Hokuyo Prosilica
UTM-30LX-EW GT3300C

point attributes intensity RGB color
processing time real time capable several hours
RMS point accuracy 0.32 m 0.049 m
total points (bridge only) 1 mil 13 mil

Table 1: Properties of LSRF and SfM point clouds.



0.400 m

0.350 m

0.300 m

0.250 m

0.200 m

0.150 m

0.100 m

0.050 m

0.000 m

35 m

(a)

0 50 100 150 200
0

2

4

6

8

10

12

14
x 10

5

66.6 % of deviation
 < 41.0 mm

absolute deviations [mm]

fr
eq

ue
nc

y

(b)

0.400 m

0.350 m

0.300 m

0.250 m

0.200 m

0.150 m

0.100 m

0.050 m

0.000 m

5 m

(c) (d)

Figure 9: (a) Color-coded absolute distances between SfM and TLS point clouds obtained by CloudCompare. (b) Histogram of absolute
distances. (c) Section of the SfM point cloud showing good points (blue),inaccurate points (red) and holes in the point cloud. (d) Images
of the SfM network can be used for visual inspection for instance to detect and localize damage on buildings.

7. OUTLOOK AND FUTURE WORK

Further work will be focus on the enhancement of both point
clouds. In case of the SfM point cloud, the acquisition of the
poorly illuminated bridge areas will be improved to close the gaps
in the resulting point cloud. Further step will be coarse georefer-
encing by using UAV-positioning data. For the LSRF point cloud,
improvements in the navigation solution might be achieved by us-
ing a navigation camera and a visual SLAM algorithm. Thus the
resulting point cloud will be more accurate, and scanning under-
neath the bridge will be possible due to the reduced vulnerability
to GPS signal loss. In addition to that, a reasonable calibration
strategy for the IMU will be worked out. An other aspect of fu-
ture work will be a LSRF strip adjustment for optimization of
the point cloud geometry. Furthermore, an integrated point cloud
generated by a quality parameter ruled merging process of the
SfM and LSRF point clouds will improve the completeness and
consistency of the results.
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