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ABSTRACT: 
 
To get around UAS limitations and propose a viable solution for wildlife monitoring, the development of new inventory methods is 
needed. However, most authors use the classic systematic transect method as data processing and statistics are easier. We thus 
created an application to process data from every type of flight plan and to help detect and compare observations on large datasets. 
WiMUAS is a small software compatible with the open-source QGIS© that allows the creation of visual maps compatible with 
geographical information systems based on telemetry data and payload parameters to estimate the covered area. The application also 
has a slider for animal detection that allows multiple observers to record and compare their results for accurate counts. We then 
tested it on data from a trial realized on savannah animal populations in Democratic Republic of Congo using the Falcon UAS. We 
created a new type of flight plan, a rosette-shaped design that can be covered in three flights,.and repeated it twice. More than 5000 
images were collected during the six flights. Image projection gives an area of 12,4 km2 for the first trial and of 12,1 km2 for the 
second. The mean sampling rate for both test is 6,1 %. Observers spotted buffaloes, hippos, warthogs and various antelopes with 
different success over an average rate of 8 images reviewed per minute. Resulting densities observed by the three observers are 
similar for each test (coefficient of variation 6,9 and 8,6 % respectively) but mean densities vary a lot between the two trials (23,8 
and 6,5 animals/km2 respectively).  

 
 

1. INTRODUCTION 

Regular, standardized animal population inventories are 
considered a wildlife management key to help monitor and 
preserve these populations (Jachmann, 2001). Because of all the 
difficulties inherent in classical manned aerial surveys, civil 
Unmanned Aerial Systems (UAS) open a door to new solutions 
(Vermeulen et al., 2013). The emerging technology, being safer, 
non-intrusive, potentially less costly in terms of material and 
logistics, and having a high spatial and temporal resolution, has 
triggered interest in the wildlife monitoring community. UAS 
could be especially useful in difficult areas such as developing 
countries facing heavy threats against their environment (Martin 
et al., 2012; Watts et al., 2010).  
 
Nevertheless, a long road remains before UAS become a viable 
alternative to replace typical field methods. Indeed, small UAS 
have some major constraints such as low endurance and range, 
sensor resolution, and the huge amount of data to be reviewed. 
These limitations will rapidly force researchers to develop new 
protocols and sampling plans to collect and review wildlife data. 
UAS has the great advantage of providing accurate flight 
parameter files and permanent data such as photos and videos. 
However, without easy and fast methods to review and analyse 
the huge datasets and provide accurate statistics, UAS will not 
be viable for efficient wildlife survey (Linchant et al., In press).  
 
In most cases and particularly in large areas such as African 
savannahs, aerial transect surveys with light aircrafts remain the 
best alternative to count large animals (Jachmann, 2001). 
Since endurance and range are two of the main constraints of 
UAS, an efficient inventory method must take that into account 
to minimize useless run-arounds. Indeed, a lot of energy and 
flight time are lost in turns where no valuable data are usually 

taken. Finding suitable take-off sites may also be difficult as it 
is often necessary to use open high grounds to get the best 
communication with the UAV. The time needed to go on site 
and to set-up the material is another constraint. It is thus 
important to limit the number of take-off sites and use them at 
their best. Small UAV often having less than two hours of 
endurance, several flights per day could then be done from one 
starting point to maximize efficiency. Therefore, the classic 
transect method may not be the most appropriate. Indeed, a lot 
of flight time is used just travelling between transects. 
Strindberg & Buckland (2004) proposed a zigzag transects 
method to avoid wasting that time during traditional inventories. 
However, the problem of limited sites and time lost to come 
back after completing the flight plan remains. 
Most drones offer different possibilities for various and more 
complex flight plans, but processing of the acquired data and 
accurate statistics are not always available. To date, more 
researchers therefore stayed to the worldwide used, proven 
transect inventory plans, acknowledging the need for a better 
solution (Linchant et al., In press).  
 
Another constraint is the sensor resolution and the sampling 
area. Digital surveys such as drone surveys cover less surface 
compared to human observations. Indeed, sensors usually cover 
a very narrow band strip when aerial visual surveys can cover 
large strips. This results in a lower sampling rate compare to 
visual surveys and differences in abundance estimates. 
Buckland et al. (2012) compared digital still and video method 
with visual method and obtained much higher estimates with 
digital method. This raises the question of whether those 
estimations are comparable. If digital surveys are to replace 
classic visual surveys, it is important that they can be compared 
in order to assess trend in populations. Two strategies are then 
possible: (i) working with unbiased estimations directly 



 

comparable from both methods, or (ii) calibrating the 
approaches with a correction factor. These considerations are 
also valid if different flight plan types are used. New methods 
and statistics then appear as completely necessary. 
 
The last important drawback for the use of UAS is the large 
datasets acquired with every flight as reviewing all those data 
after every mission is time consuming. Accurate, fast 
estimations of animal populations are needed to take measures 
to preserve populations. A few authors developed automatic 
detection procedures with success but they mainly focused on 
highly contrasting gregarious animals such as wading birds 
(Abd-Elrahman et al., 2005; Chabot & Bird, 2012; 
Grendzdörffer, 2013). Automatic detection of other animals in 
more various environments is more complicated and few 
attempts have been made to use automatic recognition. Bolger 
et al. (2012) have developed an application for automatic 
recognition of animals in the case of mark-recapture surveys 
based on skin-color patterns. Some commercial companies such 
as Wipsea (www.wipseas.com) now also offer to develop 
algorithms for animal detection on aerial photos but successes 
remain anecdotic and often focus on one particular species. To 
our knowledge, there is no software or extensions of software 
dedicated to the automatic or manual processing or analysis of 
data from complete aerial wildlife surveys in tropical regions. 
At most, one can find some GIS functions for preparing 
sampling plans (www.qgis.org). The closest that can be found 
in conservation is SMART software that allows the collection, 
the storage and the analysis of data related to conservation 
activities or collected by law enforcement patrols 
(http://smartconservationtools.org/).  
 
In this study, we assessed two main challenges, the evaluation 
of the surface covered during a flight and thus the sampling area 
with a new type of flight plan (a rosette-shaped plan), and 
efficient animal detection on thousands of photos. To overcome 
those challenges we developed a small application working with 
the open-source QGIS© software to treat the data from UAS 
wildlife inventories. We then tested it on data from a trial 
realized on savannah animal populations in Democratic 
Republic of Congo. The application starts with the selection of 
photos and detection of animals to the flight parameters analysis 
and the estimation of covered areas, providing visual maps 
compatible with geographical information systems (GIS). 
 
 

2. MATERIAL AND METHOD 

2.1 Data acquisition 

2.1.1 Study area: We ran this test in the Garamba complex 
of protected areas situated in North-Eastern Democratic 
Republic of Congo, at the border with South Sudan. This 
complex of protected areas is composed of Garamba National 
Park which has a superficie of 5130 km2 and its three 
surrounding hunting reserves, Gangala Na Bodio, Mondo 
Missa, and Azande, which have a total of 9664 km2 (Figure 1). 
The park, located in the transition area between the Guineo-
Congolese and the Guineo-Sudanese endemism centers, is 
covered by a mosaic of grass and tree savannahs, while dry 
forests and riverine forests cover the hunting reserves. 
Savannahs are dominated by Hyparrhenia and Loudetia spp. 
with Kigelia africana and Vitex donniana representing most of 
the tree layer. Rain season goes from March to November and a 
short dry season is observed between December and February. 
 
We collected a first dataset of wildlife inventory images in the 

open savannahs of Garamba National Park. The park is home 
for some of the last populations of endangered species in Congo 
such as elephants (Loxodonta africana), giraffes (Giraffa 
camelopardalis congoensis), buffaloes (Syncerus caffer), lions 
(Panthera leo), and various antelopes.  
The trial took place in the course of September and October 
2014, in the late rain season, when the grass is already high. 
 

 
Figure 1. Study area, Garamba complex of protected areas at the 

border of South Sudan. The national park alone is more than 
5000 km2of open savannah  

 
 
2.1.2 Platform and sensor: We used the Falcon UAS, to 
collect the images (Photo 2). This small fixed-wing is 
electrically powered, has a wingspan of 2,5 m and weights 6 kg. 
It has an endurance of around 1h and an average speed of 50 
km/h. The small UAV (unmanned aerial vehicle) is equipped 
with the autopilot APM©, and flight plans and control of the 
plane are managed from the ground control station with the 
open source software Mission Planner©. Data transmission 
range through digital radio link is around 10 km in an open 
space with no obstacles such as tall trees and hills. Past that 
distance the UAV can fly on autopilot but no flight monitoring 
is possible and flight information are not transmitted. Take-off 
is performed with a bungee and landing is either on the belly or 
with a parachute.  
 

 
Photo 2. Falcon UAV, an electric-powered fixed-wing of 2,5 m 

wingspan 



 

For this test the drone was equipped with a Sony Nex7 digital 
still camera (24 MP) and two small video cameras with direct 
retransmission for situation during flight. The payload is not 
mounted on a gimbal and photo orientation is therefore related 
to the plane. 
 
2.1.3 Flight plans: Since endurance and range are the main 
constraints for UAS-based surveys, we decided to minimize the 
flight time lost between effective strips during the inventory and 
take advantage of its maximal range and suitable take-off site. 
We therefore decided to set up a new inventory sampling plan 
the shape of rosettes (“flower” flight plan) centred in one point. 
Indeed, a rosette pattern intuitively appears as the most efficient 
design as the UAV always start from the take-off point and the 
entire strip covered from there is considered valid data for the 
inventory. It also allows the UAV to fly to its maximal range in 
every direction and the different “petals” of the rosette can be 
systematically dispersed. Rosette shapes are also easy to create 
and only a few waypoints are necessary for the UAV to follow 
the design. This is a major advantage considering the time 
needed to create the flight plan. Transects, even zigzag 
transects, or other various designs such as concentric circles, 
always include some flight time to reach a start point or come 
back at landing site. They also require the creation of more 
waypoints. Moreover, systematic transects are limited by the 
circular shape of the communication range. 
 
One Falcon flight can cover around 40 km of effective flight 
(with time saved for climbing and landing) and previous trials 
showed that three flights can be done safely per day. We thus 
proposed a rosette with 6 petales (each being a triangle of 20 
km) separated by 30° angles and included in a 8 km radius 
circular area. Two petals are covered by flight for a total 
inventory of 120 km (Figure 3). The 8 km radius allows a safety 
zone from the maximal communication range to provide prevent 
loss of communication in case of reduced capabilities due to 
small obstacles. 
 

 
Figure 3. Rosette flight plan designed on Mission Planner© 

 
 
The trial was repeated twice over the same area at an average 
flight altitude of 100 m as it was previously assessed a good 
compromise between detection and covered band. The overlap 
between photos was respectively 60 % and 80%. 
 
2.2 Data processing 

The next challenge was to analyse and process all the data 
acquired during the flights. We then developed a small 
application functioning as a plugin of the open source QGIS© 
software called WiMUAS (standing for Wildlife Monitoring 
with UAS). The development criteria were the possibility to 
have an application allowing both the introduction and 
management of all the flight parameters and their repercussion 

on the sampling estimation, as well as the quick manual 
detection of observations on the images by different observers 
and the resulting statistics.  
 

3. RESULTS 

3.1 Flight parameters and sampled surface estimation 

Six flights were performed in two half days in order to complete 
one complete flight plan per morning. The flight parameters  
(position, roll, pitch, yaw) are recorded in a telemetry log file on 
the ground control station by Mission Planner© during the 
flight and can be recovered from the control station. Photos 
were downloaded from the camera after each flight. 
When opened, WiMUAS software will first display a list of all 
flights with general information such as flight time, weather 
conditions, and camera settings, recorded by the operator. The 
operator can add a new flight and manually write that 
information, or double-click to open an existent flight. When 
double-clicking, a flight window opens with all the information 
and the possibility to enter the access link to the flight data 
(Figure 4). WiMUAS requires all data from one flight to be 
grouped in one file (log files, photos, other interesting 
documents). From that window, users can chose to create a 
polygon shapefile of the sampling area using the telemetry 
parameters recovered by Mission Planner© or to access the 
animal detection slider. 
 

 
 
Figure 4. Flight window used to include information about the 

flight (weather conditions, camera settings, flight time, …). 
Access links to data and log files must be provided in the 

window. Buttons on the bottom right side open feature detection 
and shapefile creation of the sampling area. 

 
 
To create the shapefile of the sampling area, WiMUAS needs a 
location file (text file) associating every photo with the UAV 
geographical position and yow, pitch, roll parameters during the 
flight. That location file can be created using the georeferencing 
tool provided by Mission Planner©. The software pairs the 
times marked in the telemetry file and on the photos as far as 
the time offset between the two blocks of data is correctly 
estimated. WiMUAS then uses the positions and angles of all 
photos to project them into a polygon shapefile based on the 
flight altitude. 
 
 



 

More than 5000 images were collected during the six flights. 
Every photo associated with a geographical position and thus 
flight parameters are labelled in a resulting location text file. 
Since we used a fixed camera trigger distance, photos have been 
taken along the complete flight, including take-off and landing. 
We used the location file to project all the photos positions in a 
waypoints layer in QGIS (Figure 5, top). Images acquired 
outside the UAV planned flight line were then discarded 
manually (landing and take-off circling and climbing) to keep 
only images that would then be reviewed for animal detection. 
A total of more than 4700 images remained (see Table 6). 
 

 
Figure 5. Top: UAV flight tracks for the first inventory trial. 

Each flight covers two triangles, starting with the North 
direction. Bottom: area covered by the first inventory obtained 

by projecting and merging image footprints after discarding 
take-off and landing parts 

 

A new location text file was then extracted for the selected 
images and placed in the general data file. From there the plugin 
took the relay. Once given the correct location the application 
can recover the text file with the images position and yaw, pitch 

and roll parameters. The operator has to input the average flight 
altitude used during the mission and the sensor size. It then 
generates the projection of all image footprints with the 
expected deformations and merged them to generate the output 
map in a shapefile format that can be displayed in GIS (Figure 
5, bottom). The projections combined for the complete 
sampling plan at an average flight altitude of 100 m gave a net 
area of 12,4 km2 for the first trial and of 12,1 km2 for the 
second.  
 
Although a constant triggering distance with a strong overlap 
was set up, gaps, sometimes very long, can be observed. Two 
main reasons can explain this phenomenon. Only georeferenced 
images are taken into account, as no parameters are known to 
project the others. Also, the triggering of the camera was not 
always effective and images were not always taken following 
the demanded overlap.  
 

Flights Trial 1 Trial 2 
  F 1 F 2 F 3 F1 F 2 F 3 
Flight time (min) 50 45 45 50 45 50 
Total photos taken 784 622 587 1300 993 1087 
Photos discarded 136 90 71 130 80 179 
Photos considered 
for detection 648 532 516 1170 913 908 

Blurry photos 3 2 3 15 7 3 

Table 6. Number of photos taken during each flight and photo 
remaining after take-off and landing parts have been discarded. 

Number of blurry photos amongst the photos considered for 
animal detection 

 
 
The overall mean sampling rate for both trials considering a 
circular sampling area of 201 km2 around the inventory plan is 
6,1 %. Figure 1 shows the influence of the 8 km radius circle in 
the park.  
 
3.2 Observation detection 

For flights where photos were taken for the purpose of wildlife 
inventory, we created a simple slider with a point and click tool 
within the same application and accessible from the flight sheet. 
The tool window (Figure 7) is composed on the left by the 
slider where every image can be reviewed with the possibility of 
zooming in and out for more precision. Every observer can open 
his own session by simply scrolling down the top right menu to 
find his name or add it and the observations he makes are then 
stored in his database. A filter allows the observers to review 
only the photos used to produce the surface covered map by 
loading the text file containing the list of georeferenced photos. 
A button on the bottom of the window can be used to mark 
blurry photos and moved them into a dedicated file. 
Observations are marked by double-clicking on the screen and 
observation types (species here) are available in a pre-existent 
library or can be added on the right side of the window. Single 
observations each has a red dot on it and group observations 
allows the observers to mark only once the type of observation 
before pointing all the objects with orange dots and have the 
total count made by the application. For photos with important 
overlap or recognizable groups, the double-counting box can be 
check to provide it to be in the final count. Observers can come 
back anytime on their selection to modify it. Finally, a 
comparative report can be generated for all observers, assessing 
the global count per type of observation and listing by number 
the photos where differences exist between observers. The list 



 

of difference can then be reviewed and errors or missed objects 
reallocated after discussion, giving new count. 
 

 
Figure 7. Three kobs marked by observer 3 using the detection 
and count tool. Each observer has his own set of observations 

and can add it by simply double-clicking on the photo 
 

Three observers reviewed the six flights and results of their 
observations totalized for each complete inventory are displayed 
in Table 8. They spotted buffaloes, hippos, warthogs and 
various antelopes with different success over an average rate of 
8 images reviewed per minute. Resulting mean densities vary a 
lot between the two trials (23,8 and 6,5 animals/km2 
respectively) but stay close enough for the three observers for 
each (coefficient of variation 6,9 and 8,6% respectively). After 
revision of all the differences, a new, more accurate count was 
produced that gives densities of 25,0 and 8,2 animals/km2. 
 
Species Trial 1 Trial 2 
  O 1 O 2 O 3 Total O1 O 2 O 3 Total 
Buffaloes 232 249 245 249 19 9 5 10 
Elephants 0 0 4 0 0 0 2 0 
Giraffes 0 0 0 0 0 0 1 0 
Hartebeests 3 12 8 13 9 4 8 6 
Hippos 22 26 24 23 36 27 28 35 
Cobs 12 14 16 14 5 16 8 18 
Warthogs 3 8 6 9 5 28 25 27 
Waterbucks 0 1 0 1 0 3 0 3 
Total 272 310 303  309 74 87 77  99 

Table 8. Comparative results of the detection by species for 
each trial and total once the differences between observers have 

been verified and observations reallocated 

 

4. DISCUSSION AND PERSPECTIVES 

4.1 Data processing 

Using the flight parameters associated with photos allows a 
more accurate surface estimation than simply assessing a fixed 
average bandwidth for the complete flight line. Indeed, the 
camera can be tilted, leading to distorted footprints. By 
automatically creating a shapefile from the georeferenced 
images, the application gives an easy, quick way to know the 
surface really covered by every flight. Lisein et al. (2013a) 
already proved that method to be accurate enough for that 
purpose. Furthermore, this method works easily for every type 
of flight plan and sensors. The gaps provoked by the photos that 

were not matched during georeferencing can be a problem as 
they are a loss of information. However, with a good flight only 
a few are normally missing. The big gaps that occurred during 
our missions come from the use of telemetry log files, which are 
only recording on the control station when the communication 
with the UAV is working. Loss of communication leads to 
discard a series of valuable photos. To prevent this, we 
recommend using the log files downloaded from the UAV 
itself. Flight altitude is another problem. Because it uses the 
average altitude given to the UAS, the projection cannot take 
into account changes in ground elevation, which can be very 
important. Digital elevation models derived from moderate 
resolution sensors such as STRM may be integrated to the flight 
plan to adapt flying altitude and moderate the effect of 
topography or as an input in the application to reduce 
inaccuracies. Flight planning also needs to be created with more 
precision to avoid overshoot in the sampling plan (see Figure 5, 
top) and error in the estimation of sampling rate. Loading pre-
prepared waypoints in Mission Planner© could do it. 
 
The use of a slider with a simple point and click tool is very 
efficient and faster than manual counting to record and compute 
observations. The possibility to compare the different counts 
within the application to merge them can also reduce the errors 
and give more accurate final results. However, some 
improvements are still needed. The method used to review the 
differences requires a user to i) come back to each photos of the 
list, ii) switch between observers to see what they missed, and 
iii) write down by hand the corrections. This could be easily 
fixed by showing for all photos with observations the results of 
every observer by transparency so differences are easy to spot. 
Changing the observations could then be done in a copy of the 
database and directly treated by the application to show the final 
count.  
Shapefiles of projected animals points are also to be developed 
as knowing the position of observations is very important for a 
lot of studies and for management. Georeferenced animal 
observation could then be used with habitat maps for example. 
 
The concept of such a tool could also be extended to other 
applications to review large set of aerial images. With the 
possibility of easily creating shapfiles by clicking on photos in a 
slider, a lot of objects could be detected. The delineation or 
identification of tree crowns for example (Lisein et al., In press) 
could beneficiate from that sort of plugin. It could also be used 
to compare results from different observers and generate maps. 
But forestry data mostly consist in large populations and 
applications consist more in photogrammetric measurement of 
height and volume and generating canopy model (Lisein et al. 
2013b). Nevertheless, this plugin is mainly about wildlife 
inventory and conservation and functionalities remain turned in 
that direction.  
 
4.2 Inventory results 

Detection differences between observers are important but not 
always highly visible as they tend to compensate each other in 
the global count. The possibility of comparing them is 
interesting but the dataset is too small to conclude significant 
statistics. Nonetheless, interesting trends are observed and 
lowest and highest detection rates are always performed by the 
same observer. This can be explained by the difference of 
training between them. Observers used to work with the images 
and to aerial count in that particular environment are expected 
to provide better results. Finally, the strong variation in 
densities between the two trials can be explained by several 
reasons. Wildlife in Garamba is scarce and therefore spreads 



 

and moves in vast areas. Animals can be in totally different 
parts of the park between two inventories, and the small groups 
risk to be completely missed by the narrow transects. The low 
sampling rate is also a main issue and allows a lot more 
variations. More repetitions and several sampling plan 
(“flowers”) spread across the park are needed to compute more 
accurate statistics and develop a better estimation method. 
 

5. CONCLUSION 

By automating important steps in the process, our application 
proved to be useful to gain time when reviewing the huge 
datasets acquired by UAS inventories. Moreover, it can be used 
to review wildlife data from various sampling methods and 
flight plans since the simple processes are common to all UAV 
surveys. The application combined with a new sampling 
methods gave interesting results and opens perspectives for the 
use of UAV in wildlife census. Larger scale inventories are 
needed to collect enough data and adapt specific statistics.  
 
 

ACKNOWLEDGEMENTS 

The authors would like to thank the European Union (EU), the 
Center for International Forestry Research (CIFOR) and the 
Forest and Climate Change in Congo project (FCCC) as well as 
R&SD for granting and supporting this study. Special thanks 
also to the ICCN and African Park Network teams involved in 
the protection and management of Garamba National Park 
(DRC) for their support and help. Thanks also to our observers 
for their dutiful work on the data. 
 

REFERENCES 

Abd-Elrahman, A., Pearlstine, L., & Percival, F., 2005. 
Development of pattern recognition algorithm for automatic 
bird detection from unmanned aerialvehicle imagery. Surveying 
and Land Information Science, 65, pp. 37-45. 

Buckland, S.T., Burt, M.L., Rexstad, E., Mellor, M., Williams, 
A.E., & Woodward, R., 2012. Aerial surveys of seabirds: the 
advent of digital methods. Journal of Applied Ecology, 49, pp. 
960-967. 

Bolger, D.T.., Morrison, T.A., Vance, B., Lee, D. & Farid, H., 
2012. A computer-assisted system for photographic mark-
recapture analysis. Methods in Ecology and Evolution, 3, pp. 
813-822. 

Chabot, D., & Bird, D.M., 2012. Evaluation of an off-the-shelf 
unmanned aircraft system for surveying flocks of geese. 
Waterbirds, 35, pp. 170-174. 

Grenzdörffer, G.J., 2013. UAS-based automatic bird count of a 
common gull colony. In: The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences, ISPRS Inter-Commission Working Group I/V 
Autonomous Navigation, 36:1. 
 
Jachmann, H., 1991. Estimating abundance of African wildlife: 
An aid to adaptive management. Kluwer Academic 
Publications, Boston, MA, USA. 

Linchant, J., Lisein, J., Semeki, J., Lejeune, P., & Vermeulen, 
C., In press. Are UAS the future of wildlife monitoring? A 
review of accomplishments and challenges.. Mammal Review, 
accepted. 

Lisein, J., Linchant, J., Lejeune, P., Bouché, P., & Vermeulen, 
C., 2013a. Aerial surveys using an unmanned aerial system 
(UAS): Comparison of different methods for estimating the 
surface area of sampling strips. Tropical Conservation Science, 
6, pp. 506-520. 

Lisein, J., Pierrot-Deseilligny, M., Bonnet, S., & Lejeune, P., 
2013b. A photogrammetric workflow for the creation of a forest 
canopy height model from small unmanned aerial system 
imagery. Forests, 4(4), pp. 922-944. 

Lisein, J., Michez, A., Claessens, H. & Lejeune, P., In press. 
Discrimination of deciduous tree species from time series on 
unmanned aerial system imagery. PLoS ONE, accepted. 

Martin, D., Edwards, H.H., Burgess, M.A., Percival, H.F., 
Fagan, D.E., Gardner, B.E., Ortega-Ortiz, J.G., Ifju, P.G., Evers, 
B.S., & Rambo, T.J., 2012. Estimating distribution of hidden 
objects with drones: from tennis balls to manatees. PLoS ONE, 
7:e38882. 

Strindberg, S., & Buckland, S.T., 2004. Zigzag survey designs 
in line transect sampling. Journal of Agricultural, Biological 
and Environmental Statistics. 9, pp. 443-461.  

Vermeulen, C., Lejeune, P., Lisein, J., Sawadogo, P., & 
Bouché, P., 2013. Unmanned aerial survey of elephants. PLoS 
ONE, 8:e54700. 

Watts, A.C., Perry, J.H., Smith, S.E., Burgess, M.A., Wilkinson, 
B.E., Szantoi, Z., Ifju, P.G., & Percival, H.F., 2010 Small 
unmanned aircraft systems for low-altitude aerial surveys. The 
Journal of Wildlife Management, 74, pp. 614-619. 

 


